next up previous
Next: References

Stochastic resonance in two coupled bistable systems

Alexander Neiman, Lutz Schimansky-Geier

Abstract:

We consider the collective response on a periodical force of two coupled bistable oscillators driven by independent noise sources. We have found that there exist an optimal value of coupling strength at which the signal-to-noise ratio of the collective response takes its maximal value. The connection of this effect with the phenomenon of stochastic synchronization is established.

Recently the phenomenon of stochastic resonance (SR) [1] became an attractor of extensive investigations in the field of nonlinear stochastic systems. There are a lot of theoretical work, numerical and analog simulations [2]. The SR has been observed in laser [3], in paramagnetic systems [4], during ion transport through channels of cell membranes [5]. Of high interest are investigations concerned with this phenomenon in biological systems in view of sensory neuron activity and neuron networks [6]. For these investigations studies of coupled oscillators are of high relevance.

In recent papers [7]-[8] the SR in globally coupled bistable oscillators were studied. Using a mean field approach [7] and eliminating adiabatically the bath variables [8] an increase of the signal-to-noise ratio (SNR) was found.

For a better understanding of coupled bistable systems we consider in the present paper only two systems, bistable and coupled but with different Kramers-escape times [9]. Recently we have shown that in such systems synchronization-like phenomena (which was called stochastic synchronization) can be observed [10].

We consider two mutually coupled bistable overdamped oscillators which are forced by statistically independent noises and one periodical signal. The system under consideration is governed by the following stochastic differential equations

  eqnarray24

where tex2html_wrap_inline433 and tex2html_wrap_inline435 are the parameters which determine the Kramers rates in the subsystems; tex2html_wrap_inline437 is the strength of coupling and D is the intensity of the zero-mean white Gaussian noises tex2html_wrap_inline441 and tex2html_wrap_inline443 , and tex2html_wrap_inline445 is the random initial phase of the signal.

In this physical situation we have to deal with three characteristic time scales: the period of the external force tex2html_wrap_inline447 and two different Kramers times of the subsystems, tex2html_wrap_inline449 and tex2html_wrap_inline451 . The interplay between them by changing the strength of coupling tex2html_wrap_inline437 will be the main interest of our study. We can expect at least two different mechanisms of growth of coherence which influence on the stochastic resonance. First, we observe coherent behavior of the subsystems at the driving frequency tex2html_wrap_inline455 only. Lateron we will show the increase of coherence due to coupling at tex2html_wrap_inline455 . The second mechanism occurs due to the coupling of the bistable systems. This case without periodical forcing, A=0, was considered in [10]. It was shown that by increasing the coupling strength x(t) and y(t) become coherent, i.e. the coherence function tex2html_wrap_inline465

  equation34

approaches values near one ( tex2html_wrap_inline467 ) for a wide region of frequencies. In (2) tex2html_wrap_inline469 is the cross spectrum of the processes x(t), y(t) and tex2html_wrap_inline475 , tex2html_wrap_inline477 are the power spectra of x(t), y(t), respectively. Thus, contrary to the first mechanism the second one takes place for a wide region of frequencies. The transition to coherent behavior is accompanied by a change of the modality of the two-dimensional stationary probability density p(x,y). Before this transition the probability density has four maxima which correspond to four wells of the appropriate potential. After the transition p(x,y) possesses two maxima. That circumstance leads to the synchronization of the processes in the subsystems via locking of their Kramers frequencies (see Fig.3 and Fig.5 in [10]).

We interest in the collective behaviour of the system. It can be described by introducing the new variable

  equation45

The power spectrum of the collective output u(t) reads

  equation48

Here tex2html_wrap_inline489 is the real part of the cross spectrum and appears from the correlations between x(t) and y(t). It will be remarkabely depend on the degree of coherence.

As in any study of stochastic resonance the quantity of interest is the signal-to-noise ratio (SNR) of the collective variable u(t). Let us consider first the special case of monostable coupled systems. The aim to consider monostable systems is to investigate the coherence phenomena of the first type, i.e. at the driving frequency only. We will apply the linear response theory [11], [12], [13].

For this purpose it will be sufficient to study coupled sytems with parabolic potential. The dynamics then obeys the system of linear stochastic differential equation

  eqnarray59

where tex2html_wrap_inline433 and tex2html_wrap_inline435 should be positive values. Obviously, in such systems stochastic resonance will not be observed (Stochastic resonance can be observed in underdamped monostable oscillator [14]) but the SNR at the driving frequency will be of interest. For the correlaton functions we got the following equations

  eqnarray69

which must be solved with initial conditions

eqnarray88

For the correlation function of the collective variable we finally obtain

equation103

where

eqnarray112

For the susceptibility [11] of the collective variable u(t) we derive the exact expression

  equation122

The SNR is connected with the susceptibility tex2html_wrap_inline503 and with the power spectrum of the unperturbed system tex2html_wrap_inline505 , i.e. in the absence of periodical excitation. It is defined by the expression

  equation140

In our particular case for the collective variable u(t) we find

  equation146

In the Fig.1 the dependence of the SNR of the collective variable vs the coupling strength tex2html_wrap_inline437 is shown. The monotonic increase of the SNR reflects the growth of the coherence by increasing the coupling. We point out that the remaining part of the spectrum, the noisy contribution, is more or less unaffected by changing the coupling strength.

Now let us consider bistable systems. We start with the limits tex2html_wrap_inline511 , tex2html_wrap_inline513 and tex2html_wrap_inline515 .

The case tex2html_wrap_inline511 . The response function of the collective variable in this case is just the sum of the response functions of the subsystems. Taking into account, for simplicity, the hoppings between the wells [13] only we found the susceptibility tex2html_wrap_inline519 in the same shape (9) as in the previous case but with another coefficients. Now tex2html_wrap_inline521 and tex2html_wrap_inline523 are the second order cumulants of the unperturbed bistable subsystems and tex2html_wrap_inline525 , tex2html_wrap_inline527 are the corresponding eigenvalues of the hopping dynamics in the subsystems. Then for the SNR of the collective variable we obtain again the expression (11) and for the SNRs of x(t) and y(t):

  equation165

In Fig.2 we show the SNRs vs noise intensity of both subsystems separately (symbols tex2html_wrap_inline533 and tex2html_wrap_inline535 ) and of the collective output (symbol tex2html_wrap_inline537 ). It is seen that tex2html_wrap_inline539 takes its maxima approximately at the same noise intensities as the SNRs for y(t) and x(t). The region at which the SNR is maximal becomes wider.

The case tex2html_wrap_inline513 . In this case we derive a stochastic differential equation for the collective variable. It reads

  equation173

and tex2html_wrap_inline547 . Again from the linear response approach we find the SNR of the collective variable

  equation183

where tex2html_wrap_inline549 , and tex2html_wrap_inline551 . The dependence tex2html_wrap_inline539 is shown in Fig.2 (symbol tex2html_wrap_inline555 ). We find the usual SNR vs noise intensity. In comparison to the previous case the maximal SNR is below of the value of the decoupled case. It is important to point out that the stochastic resonance takes place at the noise intensities which correspond to the region of the stochastic resonance of the slower dynamics x(t). That is in agreement with the results of [10] where it was shown that the strongly coupled bistable systems approaches time scales of the slower dynamics.

Weak coupling case tex2html_wrap_inline515 . In this case for two-state dynamics we can write for the correlation functions the following equations

  eqnarray194

which must be solved with initial conditions

eqnarray213

where tex2html_wrap_inline561 is the stationary probability density of the processes x(t), y(t) in the absence of periodical excitation [10]. The correlations function of the collective variable follows again (8) with

eqnarray239

The susceptibility and the signal-to-noise ratio follow (9) and (10) respectively with specified coefficients given above. Calculations in accordance with these expressions showed qualitatively the same behavior as in the case of linear coupled systems: the signal-to-noise ratio grow with increase of the coupling strength (cf. Fig.1).

Thus, we have shown that in the case of strong coupling the signal-to-noise ratio less than in the decoupled case. At the same time for the case of weak coupling we observe an increase of SNR with increase of the coupling strength. Therefore, we can expect exsistence of an optimal value of the coupling strength at which the SNR takes its maximal value.

Let us consider now the case of intermediate values of the coupling strength. In this case we use numerical simulations to calculate the SNR. In Fig.3 we present the SNRs vs the noise intensity of the subsystems for increasing values of the coupling strength. It is seen that tex2html_wrap_inline565 reflects the stochastic synchronization of the processes in the subsystems. In the decoupling case tex2html_wrap_inline565 take their maxima at the noise intensities which correspond to the Kramers rates of the subsystems (Fig.3,a). With the increase of the coupling strength the Kramers rates in the subsystems tend to coincide (see Fig.5 in [10]). This reflects in the behaviour of the tex2html_wrap_inline565 (Fig.3,b,c). Eventually, the SNRs in both subsystems take their maxima approximately at the same noise intensity (Fig.3,d).

The behaviour of the collective response is shown in Fig.4. We plot the dependence of maximal value of the SNR tex2html_wrap_inline571 vs the coupling strength tex2html_wrap_inline437 . It is important to note that this dependence possesses a maximum. Therefore, there exists an optimal value of the coupling strength. Otherwise as in the monostable coupled systems the SNR beyond this value decreases with the increase of the coupling strength.

Let us give now a qualitative explanation of that phenomenon. As we already mentioned, the power spectrum of the collective variable (4) contains also the term tex2html_wrap_inline575 . It is responsible for the coherence between the processes x(t) and y(t) in the subsystems. The SNR is the relation of the signal part to the noise part of the spectrum. In both parts we will find contributions arising from the growth of coherence.

What happens if we increase the coupling strength? If the subsystems becomes coupled two competitive processes becomes crucial. The first concerns the signal part, the second supports mainly to the noisy part. At the driving frequency tex2html_wrap_inline581 , the signal, the coherence occurs even in the absence of coupling ( tex2html_wrap_inline583 ). This coherence will be amplified by increasing of the coupling strength. This increase we have shown even for monostable coupled systems and the same will happen for coupled bistable systems. It is the main process which occurs for weak coupling below the onset of the stochastic synchronization due to the change of modality of the p(x,y) and leads to an increase of the SNR.

The second tendency which arises for moderate coupling is the stochastic synchronization at broad bands. It results in an increase of the coherence degree of x(t) and y(t) in the noisy part of the spectra. This contribution arises from hoppings taking place not at the driving frequency. It leads to an increase of the noisy part of the spectra and therefore to the decrease of the SNR. To illustrate the second tendency we show in Fig.5 the coherence function tex2html_wrap_inline465 (2) for several values of the coupling strength. It is seen that the increase of the coupling strength leads to the increase of the coherence degree in the noisy part.

The competition of both tendencies will give the obtained maximum of the SNR for an optimal coupling strength.

In conclusion, we have studied the stochastic resonance in two coupled bistable overdamped systems. We have found that the dependence of the SNR of the collective response on the coupling strength is characterized by the existence of a maximum. This maximum appears due to the interplay of two synchronization effects: (1) the synchronization of the processes in the subsystems at the driving frequency which leads to the increase of the SNR; and (2) the stochastic synchronization of the processes which leads to the increase of the noise background and therefore to the decrease of the SNR.

Acknowledgments:

We acknowledge valuable discussions with V.S. Anishchenko, W. Ebeling, A.R. Bulsara, S.M. Soskin and J. Kurths. A.N. acknowledges support from the project EVOALG sponsored by BMBFT, from the Max-Planck-Gesellschaft and from the International Scientific foundation (grant NRO 000).




next up previous
Next: References

web-master
Fri Mar 28 19:48:06 MSK 1997