
  

Technical Physics Letters, Vol. 26, No. 8, 2000, pp. 671–674. Translated from Pis’ma v Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 26, No. 15, 2000, pp. 58–64.
Original Russian Text Copyright © 2000 by Pavlov, Anishchenko.

                                                
Dynamic Characteristics of Chaotic Processes Determined 
from Point Process Analysis

A. N. Pavlov and V. S. Anishchenko
Saratov State University, Saratov, Russia

e-mail: wadim@chaos.ssu.runnet.ru
Received April 4, 2000

Abstract—The capability of calculating the highest Lyapunov index during analysis of the so-called point pro-
cesses [1] is analyzed. Two mathematical models describing the generation of pulses by receptor neurons are
considered and the conditions are established for which the dynamic characteristics of chaotic oscillations,
determined from the output sequence of pulses, are retained during linear transformations of the neuron input
signal. © 2000 MAIK “Nauka/Interperiodica”.
The study of information processing in living organ-
isms is a currently important task of natural sciences.
Solving this task encounters a large variety of particular
problems, including the question of how are data coded
by the nerve cells. Each cell (receptor neuron) is essen-
tially a threshold device transforming a complex input
signal S(t) into a sequence of identical pulses (spikes)
registered at the output (Fig. 1a). Since the shape of the
output pulses is independent of the external factors, all
information about the input signal S(t) must be con-
verted into the length of time intervals between output
pulses—interspike intervals (ISIs) [2, 3].

In how much detail can the input signal be charac-
terized upon analysis of the output sequence of spikes?
In recent years, this problem has drawn the attention of
researchers in connection with the problem of dynamic
system (DS) reconstruction. In order to apply recon-
struction methods to analysis of the point processes
(where the information is carried in the form of times
of various events), it is necessary to answer the question
formulated by Sauer [1]: can the output ISI sequence
determine the state of a system if the input signal is
deterministic and generated by the DS with small-scale
dynamics?

An answer to this question was also originally given
by Sauer [1], according to which an ISI set can be con-
sidered as points of a new coordinate of state, in using
which it is possible to characterize the small-scale
dynamics at the input. Then, Sauer [4] proved the
embedding theorem for time intervals, thus extending
rigorous mathematical formalism developed by Tak-
ens [5] to the case of point processes. The possibilities
of reconstruction were investigated by numerical meth-
ods in [6–9].

By now, various models have been developed to
describe the process of spike generation, including the
rather popular (and biologically justified) “integrate-
and-fire” (IF) and “threshold crossing” (TC) models [8].
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Within the framework of the IF model, the S(t) signal is
frequently represented by a function of variables of the
small-scale dynamic system. A set of times Ti corre-
sponding to the moments of spike generation (Fig. 1a)
is determined from the equation

(1)

where θ is the threshold level and Ii are the time inter-
vals (IF ISIs). The integral value is reset to zero on
reaching the threshold.

The TC model introduces a threshold level Θ deter-
mining the equation of a secant plane S = Θ, where S(t)
is considered as a DS coordinate. The spike production
corresponds to the time instants when the threshold
level is crossed by the signal S(t) in one direction (e.g.,
upward). From the standpoint of the DS theory, the
time intervals between spikes (TC ISIs) represent the
times of phase trajectory return to the secant plane.

In this work, we attempted to answer the question as
to how the threshold level and the ISI sequence struc-
ture affect the results of the reconstruction. The conver-
sion of a continuous input signal into a sequence of
spikes is a nonlinear transformation. Moreover, this
transformation is accompanied by a partial loss of
information about the external factor (in particular,
about the signal shape in the TC model). Can we still
calculate characteristics of the input signal using the
ISI sequence and what are the necessary conditions
providing for this possibility?

The study was focused on calculating the highest
Lyapunov index λ1, which is apparently the most infor-
mative invariant of a complex dynamic process. Below,
we will discuss the conditions under which the λ1 value
can be determined from analysis of a point process.
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Fig. 1. (a) A schematic diagram illustrating the input signal conversion by a receptor neuron. (b) A linear transformation of the input

signal: solid curve, S(t); dashed curve, Sint(t) interpolation; points, 1/Ii(Ti) values. (c) The values of instantaneous frequency

(Ti) (according to Hilbert) corresponding to the threshold level crossing (black circles connected by dashed line) and the
2π/Ii(Ti) values (open circles connected by solid line representing the ωint(t) function).
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Let us first consider the IF model. It was demon-
strated [6] that, in the high-frequency approximation,
an IF ISI sequence represents a nonlinear transforma-
tion of the input signal

(2)

Since the highest Lyapunov index is invariant with
respect to nonlinear transformations, the λ1 value cal-
culated for the Ii sequence must coincide with the
results of calculation using the S(t) signal. Our
approach to calculating the Lyapunov index is essen-
tially as follows [10, 11]. Once the IF ISI sequence is
known, we may use Eq. (2) to obtain the sequence

(3)

representing the values of the input signal multiplied by
a certain constant k at the fixed time instants Ti. In order
to pass to a signal with uniform time scale, the points
1/Ii(Ti) are interpolated by a smooth function Sint(t), for
example, by a cubic spline. This restores the linear
transformation of the input signal to a certain approxi-
mation: Sint(t) ≈ kS(t) (Fig. 1b). Consequently, the Sint(t)
signal would retain both geometric and dynamic char-
acteristics of the attractor corresponding to the input
signal (external action). Evidently, this scheme is only
valid within a certain approximation. However (see
Fig. 2a), the λ1 value calculated from the Sint(t) signal
by a method described in [12] coincides with the results
of the λ1 calculation proceeding directly from S(t).
By analogy with [6], the input signal was represented
by a linear transformation of the first coordinate of a

Ii θ/Si, Si≈ S Ti( ).=

1
Ii

--- 1
θ
---Si≈ kS Ti( )=
TE
Rössler system in a chaotic mode: S(t) = x(t) + C, θ = 35,
C = 40.

Raising the threshold level leads to an increase in
the average time interval  and, hence, a decrease in the
accuracy of Eq. (2). Figure 2b shows the results of λ1
calculation depending on the selection of constant C for
the same test system (variation of the C value is equiv-
alent to shifting the threshold level). As seen, the index
remains virtually unchanged for C > 30. This corre-
sponds to  < T0/5–T0/4, where T0 is the base period of
oscillations of the x(t) signal (cf. Fig. 2c). For smaller
C values, the size of the time window occupied by the
vector of state is greater than the signal correlation
time, which hinders reliable determination of the
dynamic characteristics of the external action (input
signal) [8].

The DS reconstruction from a sequence of recovery
times presents a more complicated problem. A possible
approach to solving this task, proposed in our previous
work [9], is as follows. First, a transition is performed
from the time intervals Ii to the points ω(Ti) = 2π/Ii cor-
responding to the instantaneous frequency values aver-
aged over the Ii intervals. Then, the ω(Ti) points are
interpolated by a smooth function (a cubic spline)
ωint(t) to pass to a signal with the uniform time scale
used in the attractor reconstruction. Using the resulting
time dependence, it is possible to describe behavior of

the average instantaneous frequency (t) (Fig. 1c),
while the reconstructed attractor retains the dynamic
characteristics of chaotic oscillations in S(t) (Fig. 2d).
[For the TC model, the S(t) signal was represented by
the first coordinate x(t) of the Rössler system.]
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Fig. 2. (a, d) Plots of the highest Lyapunov index versus the delay time τ calculated for various dimensions of the embedding space
using the (a) IF ISI and (d) TC ISI sequences for a Rössler system representing a source of chaotic oscillations (dashed lines show
the λ1 values calculated using the given system of equations); (b, e) plots of the highest Lyapunov index versus threshold level Θ
calculated for the (b) IF and (e) TC models (in the former case, the threshold variation was modeled by equivalent change in the
input signal shift C, see the text); (c, f) plots of the average time interval  versus threshold for the (c) IF (Θ modeled by C) and

(f) TC models. The dynamic characteristics of the input chaotic oscillations can be determined provided that  does not exceed the
characteristic time Tc indicated by the dashed line.
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By analogy with the IF model, we have studied in
detail dependence of the quality of reconstruction on
the selection of the threshold level Θ. A shift of this
threshold has a clear physical meaning. Indeed, assume
that we have changed the input signal amplitude. From
the standpoint of the DS theory, this would affect nei-
ther the geometry nor dynamics of the chaotic oscilla-
tions. At the same time, a change in the amplitude sig-
nificantly modifies the structure of the TC ISI output
sequence (i.e., the ISI distribution function and the
recovery time transformation). These changes are so
significant that it was previously considered impossible
to estimate characteristics of the chaotic signal at large
Θ (small-amplitude input signals) [7, 8]. However, as
seen from Fig. 2e, the highest Lyapunov index is inde-
pendent of the threshold, provided that  does not
exceed a characteristic time scale Tc of the chaotic
oscillations (in our case, the time of predictability Tc ≈
1/λ1 [13]). Therefore, despite the inability to estimate

I
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the input set geometry [8], we may still calculate the
dynamic characteristics using the ISI sequence. [Natu-
rally, in speaking of the retained characteristics, we
imply the results of approximate numerical experi-
ments rather than of the rigorous mathematical calcula-
tion: the characteristics can be evaluated to within
<±10%.]

The main conclusions from our investigation are as
follows. The dynamic characteristics of a signal from
small-scale dynamic system entering the neuron input
can be determined from the output ISI sequence, pro-
vided that the average time interval does not exceed the
characteristic time scale Tc. The time scales may be dif-
ferent for various mathematical models of spike gener-
ation: for the IF model, the Tc value does not exceed the
time required for the correlation function to attain the
first zero (for signals with clearly pronounced base fre-
quency in the spectrum, this corresponds to a quarter of
the base period); for the TC model, the characteristic
time scale is markedly greater and equals approxi-
0
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mately to the predictability time. In this work, we pre-
sented the results of calculations performed for the
Rössler system. The results were confirmed by data of
a series of experiments performed with various sources
of chaotic oscillations. Thus, the dynamic characteris-
tics of random oscillations determined from the output
ISI sequence are retained upon linear transformations
of the neuron input signal. For the restrictions formu-
lated above, the accuracy of determining these charac-
teristics is independent of the structure of the output
sequence of spikes.
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