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It is demonstrated that in principle, a global reconstruction technique can be used to reconstruct
a dynamic description from short signdlsss than ten base periods of the oscillatjpns

which means that the reconstruction technique can be employed to estimate metric and dynamic
characteristics of the operating regimes of dynamic systems using short time series.
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One method of studying various processes and phenona certain basis, limited to a finite number of terms. In the
ena in real life involves constructing and investigating math-simplest casef-; can be defined in terms of-degree poly-
ematical models of them. Such a model is conventionallynomials:
constructed by allowing for all the most important factors

which influence the behavior of the system. The modeling v n n

tas:k is complic_atgd _considerably if ?nform_ation on the quectFj(xi): > Ciiyye...) InH x:(ifi, > le=v,
being studied is limited by a one-dimensional time series of lil2, - 1n=0 k=1 k=1

one of the coordinates of state of the system. In 1987, a )

global reconstruction algorithm was proposed to construct a

mathematical model for this cad@ This algorithm can pro- WhereC;, ., are unknown coefficients which need to
vide a dynamic description in the form of a system of first-be determined. This representation will be used in the
order ordinary differential equations or discrete mappinggpresent study.

and is implemented in two stages. The first stage involves We note that the reconstructed model will be cumber-
determining the embedding space dimension and recorsome and will contain manyusually several tensof the
structing the attractor using the scalar time sergs coefficientsC;, | I, The global reconstruction proce-
=a(iAt), i=1,... N. The second stage involves definiag dure itself, which includes carefully selecting the parameters
priori the general form of the equations and specifying theof the algorithm at all its stages, is very tedious and labori-
evolution operator by the least squares method. This methogus. When this procedure is implemented, the question arises
was later improveti® and new approaches were developedas to what this model actually gives the researcher in the

for modeling using a one-dimensional time sefiés. event of a successful reconstruction. The information of
We assume that the system being studied can be deractical interest in the analyses of time series is that on the
scribed in the form operating characteristics of the dynamic system generating
this time series. Given the implication that in the dynamic
% —F(x), XeR" (1) system under study there is an attractor, these characteristics
dt ' ’ are the spectrum of Lyapunov exponents and the dimension.

These characteristics are usually calculated using standard

whereF is a r:onllnﬁa(; vector fu'rlmtt)llonf and is the state halgorithms(for instance, Refs. 8 and)9provided that the
vector. Several methods are available for reconstructing t fime of the series is sufficiently long that the structure of the

vr?ctorx from al tlme series, of which the following two are attractor being studied can be assessed along the phase tra-
the most popular: jectory. When fundamentally short signals are udess than

_ ten base periods of the oscillatignsis incorrect to use these
t)y=(a(t),a(t+7),....a(t+(n—-1 , 2 . . :
x(O=(ab).alt+r) (t+( )7) @ methods, because over the observation time the phase trajec-
x()=(a(t),dat)/dt, . .. d"La(t)/dt"1). (3 tory does not have time to visit all the regions of the attractor

and/or returns to these regions insufficiently frequetftly.
The global reconstruction problem is solved by selectingHere we consider the possibility of using a global reconstruc-
a priori the form of the vector functiofr in Eq. (1), calcu- tion algorithm to estimate the attractor characteristics in
lating the values ofix;/dt by numerical differentiation of these situations. From this point of view the influence of the
the scalar time series;, and then using the least squaressignal durationthe number of point& for a fixed discreti-

method to specify the evolution operator. zation stepAt) on the result of the modeling acquires fun-
One of the main problems here is selecting the right-damental importance.
hand sides of Eq(1). Since it is impossible to specifg In Ref. 11, by applying a reconstruction algorithm to

priori even an approximate form of the functiofg, j one-dimensional time series obtained by integrating the
=1,...n, these are represented as an expansion in terms efjuations for a Van der Pol oscillator
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1.66 for any N> N, the value oféh'l"2 """ ' will be less than
stz The estimate ofN,,, indicates the minimum

max
length of the time series required to calculate the approxima-
tion coefficients with predefined accuracy.

Note that the behavior of the reconstructed coefficients
(convergence does not depend on how well the priori
selected form of the model can describe the operating regime
1~621000 5000 of the initial system. In the following analysis we shall only

N consider those forms of the right-hand sides for which the
solution of the reconstructed system can describe the initial
oscillation regime fairly accurately. We also note that solv-
ing the problem of reconstructing a system with a periodic
regime seems to us fairly trivial. In addition, studying a sec-
tion of a time series which exhibits only a few oscillations
does not allow one to say whether it corresponds to a chaotic
or a complex periodic regime. Thus, we shall confine our
analysis to the case when the oscillation regime under study
is chaotic.

We shall consider the specific example of asBler sys-
tem. For the given values @ b, andc this system demon-
strates chaotic behavior with an attractor characterized by the
following spectrum of Lyapunov exponents;~0.09, A\,
=0.0, A3~—10.0. We shall take the coordinaxgt) dis-
cretized with the stepat=0.01 as the signal being studied.
We shall solve the modeling problem for this signal for vari-
ous N (Ne [2000-4000). The other parameters were se-
lected as follows:n=4, v=3. Of the three reconstructed

2000 N 4000 phase coordinates two were obtained by a delay method and
FIG. 1. Arbitrarily selected coefficients in the approximations to the non-ON€ was obtained by numerical differentiatiorx¢f). Figure

linearities on the right-hand sides of the equations in the reconstructedc shows the dependence of the arbitrarily selected recon-
model as a function of the numper of pomt_s in the tm_1es sedies Van der structed coefficiean - ._in this range oiN.

Pol oscillator =2, reconstruction using first coordinatet=0.01, delay Bl n ;

method,»=3); b, ¢ — for a Resler system (=4, reconstruction using In order to obtain a clear representation of the results of

first coordinate,At=0.01, two coordinates reconstructed by the delay the modeling for each reconstructed dynamic system for a
méethod, one by numerical differentiatiom=3). Line 1 corresponds to selected number of pOinN, we shall calculate the spectrum
Cap,001~—5.9. . .

of the Lyapunov exponents and the Lyapunov dimension us-
ing the Kaplan—Yorke formul® The corresponding depen-
dence ofA; andD, is plotted in Figs. 2a and 2b.

It can be seen from this figure that there is a sefNof
values for which the attractor of the reconstructed math-
ematical modelwhen the other parameters of the numerical
system are fixedhas dynamic characteristics similar to those
—b+2z(x—¢), of the attractor of the initial system generating the signal
dt being studied. However, there is also a setNofalues for

©6) which periodic oscillationsX;=0) are reconstructed instead
of dynamic chaos. In Fig. 2a the asterisks also indicate points
and also to various other known model systems, we estalyhere the phase trajectory does not belong to the basin of
lished that theN dependence of each approximation coeffi- 5tiraction of the attractor of the reconstructed equattbe
CientCiy i, I separately eXthItS convergence to SoMegq| tions of the model system do not possess the property of
limiting value Cy, | . 1, @s N increases. Two examples pyisson stability
are illustrated in Figs 1a and 1b. In this case, the distribution of the; and D, values

We introduce the relative error in the determination of gptained for varioud\ will have two maxima(Figs. 2c and
theI Cloefficlient caused by the short length of the time seriesq) one corresponding to the known unsuccessful recon-
5JN' tra n:|Cj,I1,I2 ..... |n—C?,|1,| ,.'__,|n|/|C?,|l,|2 ..... |n|- struction, i.e., the reconstruction of the periodic oscillation

", we can de- regime using a chaotic signal. The second maximum corre-

Having defined the permissible erréj;]';)’('z
termine N, using the envelop@UlJ2 I (N) such that sponds tox;~0.08, D, ~2.016. In Fig. 2c the dashed lines

------

dx_ y_ 1-bx? =1.0, b=03 (5
Y g al-bx)y-x, a=10, b=03 (5
and a Resler system

dx_ N dy_ N dz
gi= -t grExray, g

a=0.15, b=0.2, ¢=10.0,
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culated by the method described in Ref. 13 and of the
Lyapunov dimension of the attractors in the mathematical mod-
-0.03 50 N 3000 0~952000 N 2000 els reconstructed for eadN. The lines1 give the attractor
characteristics of the model system reconstructed using a long
05 0.5 signal, i.e., several hundred base periods;<0.08, D,
c 2{y d =2.015), the linex2 give the attractor characteristics of the
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