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Reconstruction of dynamic systems using short signals
A. N. Pavlov, N. B. Yanson, T. Kapitaniak, and V. S. Anishchenko

Saratov State University Technical University, Ło´dź, Poland
~Submitted January 11, 1999!
Pis’ma Zh. Tekh. Fiz.25, 7–13~June 12, 1999!

It is demonstrated that in principle, a global reconstruction technique can be used to reconstruct
a dynamic description from short signals~less than ten base periods of the oscillations!,
which means that the reconstruction technique can be employed to estimate metric and dynamic
characteristics of the operating regimes of dynamic systems using short time series.
© 1999 American Institute of Physics.@S1063-7850~99!00206-2#
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One method of studying various processes and phen
ena in real life involves constructing and investigating ma
ematical models of them. Such a model is conventiona
constructed by allowing for all the most important facto
which influence the behavior of the system. The model
task is complicated considerably if information on the obj
being studied is limited by a one-dimensional time series
one of the coordinates of state of the system. In 1987
global reconstruction algorithm was proposed to constru
mathematical model for this case.1,2 This algorithm can pro-
vide a dynamic description in the form of a system of fir
order ordinary differential equations or discrete mappin
and is implemented in two stages. The first stage invol
determining the embedding space dimension and rec
structing the attractor using the scalar time seriesai

5a( iDt), i 51, . . . ,N. The second stage involves defininga
priori the general form of the equations and specifying
evolution operator by the least squares method. This me
was later improved3–5 and new approaches were develop
for modeling using a one-dimensional time series.6,7

We assume that the system being studied can be
scribed in the form

dx

dt
5F~x!, xPRn, ~1!

where F is a nonlinear vector function andx is the state
vector. Several methods are available for reconstructing
vectorx from a time series, of which the following two ar
the most popular:

x~ t !5~a~ t !,a~ t1t!, . . . ,a~ t1~n21!t!!, ~2!

x~ t !5~a~ t !,da~ t !/dt, . . . ,dn21a~ t !/dtn21!. ~3!

The global reconstruction problem is solved by select
a priori the form of the vector functionF in Eq. ~1!, calcu-
lating the values ofdxi /dt by numerical differentiation of
the scalar time seriesai , and then using the least squar
method to specify the evolution operator.

One of the main problems here is selecting the rig
hand sides of Eq.~1!. Since it is impossible to specifya
priori even an approximate form of the functionsF j , j
51, . . .n, these are represented as an expansion in term
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a certain basis, limited to a finite number of terms. In t
simplest case,F j can be defined in terms ofn-degree poly-
nomials:

F j~xi !5 (
l 1 ,l 2 , . . . ,l n50

n

Cj ,l 1 ,l 2 , . . . ,l n)k51

n

xk,i
l k , (

k51

n

l k<n,

~4!

whereCj ,l 1 ,l 2 , . . . ,l n
are unknown coefficients which need

be determined. This representation will be used in
present study.

We note that the reconstructed model will be cumb
some and will contain many~usually several tens! of the
coefficientsCj ,l 1 ,l 2 , . . . ,l n

. The global reconstruction proce
dure itself, which includes carefully selecting the paramet
of the algorithm at all its stages, is very tedious and labo
ous. When this procedure is implemented, the question ar
as to what this model actually gives the researcher in
event of a successful reconstruction. The information
practical interest in the analyses of time series is that on
operating characteristics of the dynamic system genera
this time series. Given the implication that in the dynam
system under study there is an attractor, these character
are the spectrum of Lyapunov exponents and the dimens
These characteristics are usually calculated using stan
algorithms ~for instance, Refs. 8 and 9!, provided that the
time of the series is sufficiently long that the structure of t
attractor being studied can be assessed along the phas
jectory. When fundamentally short signals are used~less than
ten base periods of the oscillations! it is incorrect to use these
methods, because over the observation time the phase tr
tory does not have time to visit all the regions of the attrac
and/or returns to these regions insufficiently frequently10

Here we consider the possibility of using a global reconstr
tion algorithm to estimate the attractor characteristics
these situations. From this point of view the influence of t
signal duration~the number of pointsN for a fixed discreti-
zation stepDt) on the result of the modeling acquires fu
damental importance.

In Ref. 11, by applying a reconstruction algorithm
one-dimensional time series obtained by integrating
equations for a Van der Pol oscillator
© 1999 American Institute of Physics
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dx

dt
5y,

dy

dt
5a~12bx2!y2x, a51.0, b50.3 ~5!

and a Ro¨ssler system

dx

dt
52~y1z!,

dy

dt
5x1ay,

dz

dt
5b1z~x2c!,

a50.15, b50.2, c510.0, ~6!

and also to various other known model systems, we es
lished that theN dependence of each approximation coe
cient Cj ,l 1 ,l 2 , . . . ,l n

separately exhibits convergence to som

limiting value Cj ,l 1 ,l 2 , . . . ,l n
0 as N increases. Two example

are illustrated in Figs 1a and 1b.
We introduce the relative error in the determination

the coefficient caused by the short length of the time se
dN

j ,l 1 ,l 2 , . . . ,l n5uCj ,l 1 ,l 2 , . . . ,l n
2Cj ,l 1 ,l 2 , . . . ,l n

0 u/uCj ,l 1 ,l 2 , . . . ,l n
0 u.

Having defined the permissible errordmax
j,l1,l2, . . . ln , we can de-

termineNmin using the envelopeCj ,l 1 ,l 2 , . . . ,l n
~N! such that

FIG. 1. Arbitrarily selected coefficients in the approximations to the n
linearities on the right-hand sides of the equations in the reconstru
model as a function of the number of points in the times series: a — Van der
Pol oscillator (n52, reconstruction using first coordinate,Dt50.01, delay
method,n53); b, c — for a Ro¨ssler system (n54, reconstruction using
first coordinate,Dt50.01, two coordinates reconstructed by the de
method, one by numerical differentiation,n53). Line 1 corresponds to
C4,0,0,0,1

0 '25.9.
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-

f
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for any N.Nmin the value ofdN
j ,l 1 ,l 2 , . . . ,l n will be less than

dmax
j,l1,l2, . . . ,ln . The estimate ofNmin indicates the minimum

length of the time series required to calculate the approxim
tion coefficients with predefined accuracy.

Note that the behavior of the reconstructed coefficie
~convergence! does not depend on how well thea priori
selected form of the model can describe the operating reg
of the initial system. In the following analysis we shall on
consider those forms of the right-hand sides for which
solution of the reconstructed system can describe the in
oscillation regime fairly accurately. We also note that so
ing the problem of reconstructing a system with a perio
regime seems to us fairly trivial. In addition, studying a se
tion of a time series which exhibits only a few oscillation
does not allow one to say whether it corresponds to a cha
or a complex periodic regime. Thus, we shall confine o
analysis to the case when the oscillation regime under st
is chaotic.

We shall consider the specific example of a Ro¨ssler sys-
tem. For the given values ofa, b, andc this system demon-
strates chaotic behavior with an attractor characterized by
following spectrum of Lyapunov exponents:l1'0.09, l2

50.0, l3'210.0. We shall take the coordinatex(t) dis-
cretized with the stepDt50.01 as the signal being studie
We shall solve the modeling problem for this signal for va
ous N (NP @2000–4000#!. The other parameters were s
lected as follows:n54, n53. Of the three reconstructe
phase coordinates two were obtained by a delay method
one was obtained by numerical differentiation ofx(t). Figure
1c shows the dependence of the arbitrarily selected rec
structed coefficientCj ,l 1 ,l 2 , . . . ,l n

in this range ofN.

In order to obtain a clear representation of the results
the modeling for each reconstructed dynamic system fo
selected number of pointsN, we shall calculate the spectrum
of the Lyapunov exponents and the Lyapunov dimension
ing the Kaplan–Yorke formula.12 The corresponding depen
dence ofl1 andDL is plotted in Figs. 2a and 2b.

It can be seen from this figure that there is a set oN
values for which the attractor of the reconstructed ma
ematical model~when the other parameters of the numeric
system are fixed! has dynamic characteristics similar to tho
of the attractor of the initial system generating the sig
being studied. However, there is also a set ofN values for
which periodic oscillations (l150) are reconstructed instea
of dynamic chaos. In Fig. 2a the asterisks also indicate po
where the phase trajectory does not belong to the basi
attraction of the attractor of the reconstructed equation~the
solutions of the model system do not possess the proper
Poisson stability!.

In this case, the distribution of thel1 and DL values
obtained for variousN will have two maxima~Figs. 2c and
2d!, one corresponding to the known unsuccessful rec
struction, i.e., the reconstruction of the periodic oscillati
regime using a chaotic signal. The second maximum co
sponds tol1'0.08, DL'2.016. In Fig. 2c the dashed line
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FIG. 2. a, b — Values of the leading Lyapunov exponent ca
culated by the method described in Ref. 13 and of t
Lyapunov dimension of the attractors in the mathematical m
els reconstructed for eachN. The lines1 give the attractor
characteristics of the model system reconstructed using a l
signal, i.e., several hundred base periods (l150.08, DL

52.015), the lines2 give the attractor characteristics of th
initial system~6! — l150.09, DL52.01; c, d — distribution
densities ofl1 andDL .
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show the values of the leading Lyapunov exponent ca
lated by a method described in Ref. 13 using the equation
a mathematical model reconstructed by a method of rec
struction using a long signal, i.e., several tens of base per
~line 1! and using the equations of system~6! ~line 2!. The
results show that the positive value of the Lyapunov ex
nent corresponding to the distribution maximum is close
the true value.

To conclude, provided that thea priori selected form of
the dynamic equations can qualitatively describe the ini
chaotic regime, applying the reconstruction algorithm
short time series can give estimates of the characteristic
the initial attractor similar to those which can be calcula
by processing long time series using standard methods.

Similar results were obtained for a modified inertia
nonlinearity generator14 and for various other systems.

This work was partially supported by INTAS Grant N
96-0305 and by the Royal Society, London.
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