TECHNICAL PHYSICS LETTERS VOLUME 25, NUMBER 5 MAY 1999

Global reconstruction from nonstationary data
N. B. Yanson, A. N. Pavlov, T. Kapitaniak, and V. S. Anishchenko

Saratov State University;
Technical University, Lodz, Poland
(Submitted January 20, 1999

Pis'ma zZh. Tekh. Fiz25, 74-81(May 26, 1999

One-dimensional time series of a dynamical system with slowly varying parameters are
investigated. For estimation of the characteristics of the attractors of such a system which exist
for fixed values of the parameters, it is proposed to “cut out” from the time series short

segments that belong to the individual attractors and to use them to reconstruct a model dynamical
system. ©1999 American Institute of PhysidsS1063-785(19)02905-5

Papers in which dynamical systems are analyzed from 1) the functionu(t) is oscillatory;
one-dimensional time series as a rule have the goal of esti- 2) for simplicity we restrict consideration to the case of
mating the characteristics of the operating regimes of th@ne-parameter modulation, i.g«; = u;(t), wu(t)=const k
systems, specifically, to calculate the power spectra and mo=1, ... mk#j;
ment functions and to determine the geometric and dynamic 3) the parameters vary slowly not only in comparison
characteristics of the attractors, etc. One of the most compli-
cated problems is to predict the future behavior of the system
and to construct a mathematical model describing the evolu- 12.0
tion of its state(the problem of global reconstructipn a

An algorithm for global reconstruction of a dynamical
system from one-dimensional times series was first proposed
in 198712 In recent years the technique of modeling from
experimental data has been discussed in a humber of papers:
various modifications of the global reconstruction method
have been developéd?® and several original approaches to
the problem have been implemenfed.

Since most of the algorithms hitherto developed for solv- 0.0
ing the aforementioned problems are applicable to stationary
signals, it is ordinarily assumed that the time series is gener- 20.0
ated by a finite-dimensional dynamical system with constant
parameters,

dx/dt=F(x,;), xeR", pmeR™, (1)

in which the investigated processes are assumed stationary.
However, if real experimental signals are being ana-
lyzed, especially signals of biological origin, such an as-
sumption is not always justified, since the initial objects are -20.0
open systems, subject to the influence of the surrounding
medium. Such systems, on account of the presence of feed- 750
back, generally function in a regime of adaptation to changes
in the external conditions. The signals generated by them are
nonstationary, and the adaptation process can often be inter-
preted as a variation of the parameters of the system in time. c?
In this paper we consider the possibility of applying the *
technique of reconstruction to a one-dimensional time series
of a dynamical system with slowly varying parameters for
the purpose of determining the dependence of the character- 0.0
istics of the attractors of the systems on the values of the o t 20000

control parameters. FlG. 1 Modulat ‘i f the Rissl b
_ ; ; . 1. a: Modulation of the parameterof the Rassler system; b: corre-
Suppose thap' M(t) in the dynamlcal SySterm)' Let sponding time dependenaét); c: time dependence of the variance calcu-

us make several assumptions under which we will solve theyeq from the signalb) within a time window that is shifted along the time
stated problem: series.
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of the time series in Fig. 1b and corresponding to lextedd?2 in

Fig. 1c; b,d: attractors of the dynamical systems reconstructed
20 20 from the given phase portrait. The parameters of the reconstruction
for Fig. 2 are as follows: a,b — dimension of the embedding space
n=3, the right-hand sides were approximated by third-degree
polynomials, and the coordinates were reconstructed by the
method of successive differentiatidhc,d — dimension of the
embedding space=4, the right-hand sides were approximated by
third-degree polynomials here also, but the coordinates were re-
constructed by the delay methoel — the power spectrum calcu-
20 X 20 20 X 20 lated from thex coordinate ‘of the lf&;sle_r system at the value of
the parameter corresponding to lewlin Fig. 1g f — power
spectrum calculated from the solution of the reconstructed model

0.0 0.0 system.
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with the period of the base frequency of the oscillations of  We choose the time window for the signdlt) so as to
the system under study but also in comparison with the dube long enough to encompass several periods of the observed
ration of the transient processes, so that one can neglect thiene series but short enough that the parameters of the sys-
inertial properties of the system; tem can be considered approximately constant during this
4) the system does not exhibit multistability phenomenatime interval. We will determine the character of the para-
i.e., for identical values ofu it functions in the same dy- metric modulation. For this we will calculate the moments
namical regime. for segments of the time series inside a time window 50
These assumptions allow us to assume that at timegimensionless time units longncompassing approximately
when the parameters of the system take on the same valuegsperiods of the oscillationd’ By shifting the window along
the phase transitions belong to the same attractor. We W|the Signa'y we construct the time dependence of these mo-
discuss the meaning of the fourth assumption, which may nghents. Obviously a changeover of the regime of functioning
be necessary, below. _ . _ of the system will not lead to a change of all the moments
We note that we are analyzing only a time series genergimyitaneously. For example, for the time series in Fig. 1b

ated by a system with varying parameters and do not havge mean value does not change as the control parameter is

information about the concrete form of the evolution equa- 4 jeq. However, one can always find moments which will

tions of the system or about the character of the time depen .t to 4 changeover of regime, and for the time series under

denZe ofpe(t). le. | del the ai o ith th study the variance is one of tho$Eig. 19. The behavior
S an example, let us model the given situation with t €of this graph qualitatively reproduces the functi@(t)
well-known Rassler modef

(Fig. 1a.
dx dy dz Let us now consider two levels corresponding to two
G- —WF2, gTxtay, gp=btzx—o), different values of the variano@ig. 19, which, as we as-

sume, correspond to two fixed values of the parametém

a=0.15, b=02, 2 an actual calculation with real signals we will not know the
where the parametervaries in an irregular wagFig. 13 on  values of the control parameters of the system and will only
the interval*~? On this interval a transition occurs from a assume that each set of them corresponds to some value of
one-cycle to a regime of chaotic oscillations through a casthe moment. However, for the modeled situation we know
cade of period-doubling bifurcations. The relation betweerthat the lower levelline 1) corresponds to a one-cycle limit
the mean modulation period of the parameter and the basgycle, while the upper levéline 2) corresponds to a chaotic
period of the auto-oscillations(t) was chosen to be of the regime.
order of 1000:1. The observed time seri€¥y. 1b is non- We choose small neighborhoods of the poifite size
stationary. of the neighborhood is about one period of the oscillations



414 Tech. Phys. Lett. 25 (5), May 1999 Yanson et al.

in which each chosen level crosses the time dependence tdristics of the regimes of functioning of a dynamical system
the variance. We “cut out” the corresponding segments ofwith slowly varying parameters from a one-dimensional time
the time series for these neighborhoods and apply to therseries.
the standard embedding technique, e.g., the delay method or We note in closing that the technique described above is
the method of successive differentiatidit! The results of applicable under conditions where the system under study
the reconstruction of the phase portrait for such segments fatoes not exhibit multistability and the related hysteresis. If
the two different levels are shown in Figs. 2a and 2c, respechis is not the case, then the time dependences of the moment
tively. The segments of the phase trajectories do not “meefunctions will not reproduce the law of modulation of the
up” with one another and are rather short, but we assumparameters. However, since the moments characterize the re-
that they belong to the same attractthie regular and the gime of oscillations and not the values of the parameters, we
chaotic, respectively assume that this technique will permit reconstruction of the
Since the number of state vectors reconstructed by thisecessary attractors even in that case, but this question will
method may be quite small and, moreover, the reconstructegquire a separate detailed investigation.
segments of the phase trajectories do not “meet up,” the The research reported was supported in part by INTAS
application of the standard method of signal processing, sucGrant 96-0305 and by the Korolev Society of London.
as calculation of the autocorrelation function, power spec; _
trum, Lyapunov exponents, etc., to these data is problemati-1° calculate the moment functions of the random process one needs to
. . . know its distribution densities. However, by making the assumption that
cal. At the same time, employlng the teChmque of gIObaI the process under study is stationary over the chosen time segwent
reconstruction presupposes only knowledge of a set of stateissume that the oscillations occur at an attracémd ergodic, one can
vectors at discrete times and their time derivatifesre the replace the averaging over an ensemble of time series by a time average.

Iength of the signal may be reIativer sh)é?t“and does not For calculations to high accuracy in averaging over time it is necessary that
the time series be long. Here, with short time series, we can evaluate the

?mpose any req.UirementS on the Fon_tinUity of the. phase tra-moments only approximately, and that will lead to choppiness of the
jectory. Let us illustrate the application of the given algo- graphs of their “time” dependencéFig. 19.
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and?2 in Fig. 1c one can track the evolution of the charac-Translated by Steve Torstveit



