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Global reconstruction from nonstationary data
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One-dimensional time series of a dynamical system with slowly varying parameters are
investigated. For estimation of the characteristics of the attractors of such a system which exist
for fixed values of the parameters, it is proposed to ‘‘cut out’’ from the time series short
segments that belong to the individual attractors and to use them to reconstruct a model dynamical
system. ©1999 American Institute of Physics.@S1063-7850~99!02905-5#
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Papers in which dynamical systems are analyzed fr
one-dimensional time series as a rule have the goal of
mating the characteristics of the operating regimes of
systems, specifically, to calculate the power spectra and
ment functions and to determine the geometric and dyna
characteristics of the attractors, etc. One of the most com
cated problems is to predict the future behavior of the sys
and to construct a mathematical model describing the ev
tion of its state~the problem of global reconstruction!.

An algorithm for global reconstruction of a dynamic
system from one-dimensional times series was first propo
in 1987.1,2 In recent years the technique of modeling fro
experimental data has been discussed in a number of pa
various modifications of the global reconstruction meth
have been developed,3–5 and several original approaches
the problem have been implemented.6,7

Since most of the algorithms hitherto developed for so
ing the aforementioned problems are applicable to station
signals, it is ordinarily assumed that the time series is ge
ated by a finite-dimensional dynamical system with const
parameters,

dx/dt5F~x,m!, xPRn, mPRm, ~1!

in which the investigated processes are assumed station
However, if real experimental signals are being an

lyzed, especially signals of biological origin, such an a
sumption is not always justified, since the initial objects a
open systems, subject to the influence of the surround
medium. Such systems, on account of the presence of f
back, generally function in a regime of adaptation to chan
in the external conditions. The signals generated by them
nonstationary, and the adaptation process can often be i
preted as a variation of the parameters of the system in t

In this paper we consider the possibility of applying t
technique of reconstruction to a one-dimensional time se
of a dynamical system with slowly varying parameters
the purpose of determining the dependence of the chara
istics of the attractors of the systems on the values of
control parameters.

Suppose thatm5m(t) in the dynamical system~1!. Let
us make several assumptions under which we will solve
stated problem:
4121063-7850/99/25(5)/3/$15.00
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1! the functionm(t) is oscillatory;
2! for simplicity we restrict consideration to the case

one-parameter modulation, i.e.,m j5m j (t), mk(t)5const, k
51, . . . ,m,kÞ j ;

3! the parameters vary slowly not only in comparis

FIG. 1. a: Modulation of the parameterc of the Rössler system; b: corre-
sponding time dependencex(t); c: time dependence of the variance calc
lated from the signal~b! within a time window that is shifted along the tim
series.
© 1999 American Institute of Physics
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FIG. 2. a,c: Phase trajectories reconstructed from short segm
of the time series in Fig. 1b and corresponding to levels1 and2 in
Fig. 1c; b,d: attractors of the dynamical systems reconstruc
from the given phase portrait. The parameters of the reconstruc
for Fig. 2 are as follows: a,b — dimension of the embedding sp
n53, the right-hand sides were approximated by third-deg
polynomials, and the coordinates were reconstructed by
method of successive differentiation;11 c,d — dimension of the
embedding spacen54, the right-hand sides were approximated
third-degree polynomials here also, but the coordinates were
constructed by the delay method; e — the power spectrum calcu
lated from thex coordinate of the Ro¨ssler system at the value o
the parameter corresponding to level2 in Fig. 1c; f — power
spectrum calculated from the solution of the reconstructed mo
system.
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with the period of the base frequency of the oscillations
the system under study but also in comparison with the
ration of the transient processes, so that one can neglec
inertial properties of the system;

4! the system does not exhibit multistability phenome
i.e., for identical values ofm it functions in the same dy
namical regime.

These assumptions allow us to assume that at ti
when the parameters of the system take on the same va
the phase transitions belong to the same attractor. We
discuss the meaning of the fourth assumption, which may
be necessary, below.

We note that we are analyzing only a time series gen
ated by a system with varying parameters and do not h
information about the concrete form of the evolution equ
tions of the system or about the character of the time dep
dence ofm(t).

As an example, let us model the given situation with t
well-known Rössler model:8

dx

dt
52~y1z!,

dy

dt
5x1ay,

dz

dt
5b1z~x2c!,

a50.15, b50.2, ~2!

where the parameterc varies in an irregular way~Fig. 1a! on
the interval.1–12 On this interval a transition occurs from
one-cycle to a regime of chaotic oscillations through a c
cade of period-doubling bifurcations. The relation betwe
the mean modulation period of the parameter and the b
period of the auto-oscillationsx(t) was chosen to be of th
order of 1000:1. The observed time series~Fig. 1b! is non-
stationary.
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We choose the time window for the signalx(t) so as to
be long enough to encompass several periods of the obse
time series but short enough that the parameters of the
tem can be considered approximately constant during
time interval. We will determine the character of the pa
metric modulation. For this we will calculate the momen
for segments of the time series inside a time window
dimensionless time units long~encompassing approximatel
8 periods of the oscillations!.1! By shifting the window along
the signal, we construct the time dependence of these
ments. Obviously a changeover of the regime of function
of the system will not lead to a change of all the mome
simultaneously. For example, for the time series in Fig.
the mean value does not change as the control paramet
varied. However, one can always find moments which w
react to a changeover of regime, and for the time series un
study the variance is one of those~Fig. 1c!. The behavior
of this graph qualitatively reproduces the functionc(t)
~Fig. 1a!.

Let us now consider two levels corresponding to tw
different values of the variance~Fig. 1c!, which, as we as-
sume, correspond to two fixed values of the parameterc. In
an actual calculation with real signals we will not know th
values of the control parameters of the system and will o
assume that each set of them corresponds to some valu
the moment. However, for the modeled situation we kn
that the lower level~line 1! corresponds to a one-cycle lim
cycle, while the upper level~line 2! corresponds to a chaoti
regime.

We choose small neighborhoods of the points~the size
of the neighborhood is about one period of the oscillatio!
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in which each chosen level crosses the time dependenc
the variance. We ‘‘cut out’’ the corresponding segments
the time series for these neighborhoods and apply to th
the standard embedding technique, e.g., the delay metho
the method of successive differentiation.9–11 The results of
the reconstruction of the phase portrait for such segments
the two different levels are shown in Figs. 2a and 2c, resp
tively. The segments of the phase trajectories do not ‘‘m
up’’ with one another and are rather short, but we assu
that they belong to the same attractor~the regular and the
chaotic, respectively!.

Since the number of state vectors reconstructed by
method may be quite small and, moreover, the reconstru
segments of the phase trajectories do not ‘‘meet up,’’
application of the standard method of signal processing, s
as calculation of the autocorrelation function, power sp
trum, Lyapunov exponents, etc., to these data is problem
cal. At the same time, employing the technique of glo
reconstruction presupposes only knowledge of a set of s
vectors at discrete times and their time derivatives~here the
length of the signal may be relatively short!12,13and does not
impose any requirements on the continuity of the phase
jectory. Let us illustrate the application of the given alg
rithm to the phase portraits shown in Figs. 2a and 2c~the
parameters of the algorithm are given in the captions!.

Figures 2b and 2d show the attractors correspondin
the reconstructed models. Then, having obtained a dynam
description of the necessary regime, one can by nume
integration generate a phase trajectory of arbitrary dura
and calculate from it the characteristics of the attractors
standard algorithms. In particular, the maximum Lyapun
exponent l1 calculated for the chaotic attractor of th
Rössler system by the method of Ref. 14 forc'8.0 and
corresponding to level2 in Fig. 1d, has a value'0.065. The
Lyapunov exponent calculated by the same method from
equations of the model system obtained for level2 is
'0.052, somewhat less than its ‘‘true’’ value. For compa
son, in Figs. 2e and 2f we show the power spectra of
initial chaotic attractor of system~2! and of the chaotic at-
tractor of the corresponding reconstructed system.

In summary, with the multiwindow reconstruction pro
cedure discussed in this paper, by shifting the straight line1
and 2 in Fig. 1c one can track the evolution of the chara
of
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teristics of the regimes of functioning of a dynamical syste
with slowly varying parameters from a one-dimensional tim
series.

We note in closing that the technique described abov
applicable under conditions where the system under st
does not exhibit multistability and the related hysteresis
this is not the case, then the time dependences of the mom
functions will not reproduce the law of modulation of th
parameters. However, since the moments characterize th
gime of oscillations and not the values of the parameters,
assume that this technique will permit reconstruction of
necessary attractors even in that case, but this question
require a separate detailed investigation.

The research reported was supported in part by INT
Grant 96-0305 and by the Korolev Society of London.

1!To calculate the moment functions of the random process one need
know its distribution densities. However, by making the assumption t
the process under study is stationary over the chosen time segmen~we
assume that the oscillations occur at an attractor! and ergodic, one can
replace the averaging over an ensemble of time series by a time ave
For calculations to high accuracy in averaging over time it is necessary
the time series be long. Here, with short time series, we can evaluate
moments only approximately, and that will lead to choppiness of
graphs of their ‘‘time’’ dependence~Fig. 1c!.
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