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Abstract
The purpose of this paper is to demonstrate how modern statistical techniques
of non-stationary time-series analysis can be used to characterize the mutual
interaction among three coexisting rhythms in nephron pressure and flow
regulation. Besides a relatively fast vasomotoric rhythm with a period of 5–8 s
and a somewhat slower mode arising from an instability in the tubuloglomerular
feedback mechanism, we also observe a very slow mode with a period of 100–
200 s. Double-wavelet techniques are used to study how the very slow rhythm
influences the two faster modes. In a broader perspective, the paper emphasizes
the significance of complex dynamic phenomena in the normal and pathological
function of physiological systems and discusses how simulation methods can
help to understand the underlying biological mechanisms. At the present there
is no causal explanation of the very slow mode. However, vascular oscillations
with similar frequencies have been observed in other tissues.
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1. Introduction

Regulation and coordination of our normal physiological functions involve the interplay of
a large variety of rhythmic processes that occur at all the different levels of the organism’s
structural hierarchy and cover a wide range of different time scales. Examples at the cellular
level are the sustained metabolic oscillations and calcium dynamics observed, for instance, in
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smooth muscle cells (Aalkjaer and Nilsson 2005), and the characteristic spiking and bursting
phenomena observed in the membrane potential of cold and warm receptor cells (Schäfer
et al 2004), insulin producing pancreatic β-cells (Sherman et al 1988), and many other types
of nerve and gland cells. Rhythmic phenomena, although typically at significantly longer time
scales, are also manifest in the regulation of many organs as well as in the overall hormonal
coordination of the organism.

The coexistence of two or more modes in the functioning of a biological system often
leads to different forms of interaction. A typical result of such an interaction is synchronization
(or entrainment), where each of the interacting modes adjust their dynamics so as to attain
a rational ratio between their frequencies. Synchronization plays an important role in the
dynamics of many living system (Pikovsky et al 2001, Mosekilde et al 2002). The well-
known examples are the entrainment between the heart rate and the breathing cycle (Schäfer
et al 1999, Rzeczinski et al 2002), entrainment of the cell division cycle to the circadian
rhythm and cooperative dynamics of neuronal ensembles (Kopell et al 2000). Pathological
synchronization of oscillatory activity in the brain is supposed to lead to Parkinsonian tremor
(Tass 2002, Tass et al 2006) and significant efforts are made to try to develop effective
techniques to desynchronize the entrained cells through deep brain electrical stimulation.
Tass (Tass et al 2000), for instance, has used models of a large number of globally coupled
so-called phase oscillators to devise a phase-resetting technique that can be used in demand
mode and seems to produce long-term beneficial effects. Altinok et al (2007) have used a
model of the synchronization of the cell cycle with the circadian rhythm to design an improved
chronotherapeutic treatment of male patients with intestinal cancer. Synchronization has also
been observed among the mechanisms of renal autoregulation (Holstein-Rathlou et al 2001)
where their manifestations are clearly distinguishable between normotensive and hypertensive
rats (Sosnovtseva et al 2002, 2007a).

Modulation is another example of nonlinear interaction between the modes in a biological
system. Here, the instantaneous amplitude or frequency of one (the fast) mode is forced
to vary in step with the other (slower) process. A well-known phenomenon, observed in
humans as well as animals, is the respiratory modulation of the heart rate, with the heart
rate increasing during inspiration and decreasing during expiration (Bračič and Stefanovska,
2002). This phenomenon is clearly revealed in the pulse oximetry signal (Adison and Watson
2004). We have recently reported on mode-to-mode interaction in the form of frequency and
amplitude modulation both for the mechanisms of kidney autoregulation (Sosnovtseva et al
2004, 2005b, Marsh et al 2005) and for coexisting rhythmic components of the intracellular
processes (Sosnovtseva et al 2005a, Brazhe et al 2006).

Over the years we have developed a series of models of the processes involved in renal
autoregulation (Mosekilde 1996, Barfred et al 1996, Sosnovtseva et al 2007b) and we have
simulated in detail how neighboring nephrons synchronize their autoregulatory processes
(Mosekilde et al 2002). The purpose of the present paper is to demonstrate how modern
statistical techniques for nonstationary time-series analysis (wavelet and double wavelet
techniques) can be used to identify several coexisting rhythms in nephron pressure and flow
regulation. Besides a relatively fast myogenic mode with a period of 5–8 s and a somewhat
slower mode associated with an instability in the tubuloglomerular feedback control with a
period of about 35 s, we also identify a very slow mode with a period of 100–200 s. In the
work (Sosnovtseva et al 2005b), we have examined interactions between the first two rhythmic
components and we have shown that hypertensive rats typically display a higher strength of
the frequency/amplitude modulation of the myogenic dynamics. Unlike the previous studies,
we focus in this paper on the very slow rhythmic dynamics and on interactions between the
revealed 100–200 s oscillatory process and the two known mechanisms of renal regulation.
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By means of double-wavelet techniques we investigate how the very slow mode modulates
the two faster modes. The idea of such an analysis is twofold: (i) by measuring the degree
of modulation of one mode by another we can characterize the magnitude and form of the
nonlinear coupling mechanisms between the modes and (ii) by applying a similar approach to
experimental data obtained during administration of, for instance, an antihypertensive drug,
we can extract significant information about the drug’s effects on the nephron autoregulation.

At the present we know of no explanation of the physiological mechanisms underlying
the very slow mode. It might not be related to the nephron itself, but could easily arise in
the larger vessels of the kidney. In fact, the considered experimental data does not even
exclude that it may arise outside the kidney and be transmitted by the blood pressure into the
tubular pressure. Let us note that vascular oscillations with similar frequencies have recently
been observed in other tissues (Hill et al 2005), and the presence of a ‘third’, slow renal
autoregulatory mechanism in the kidney was described in recent works by Just (2007) and by
Gorbach et al (2007).

2. Wavelet analysis

Many physiological processes are highly nonstationary and inhomogeneous, which is why
spectral analysis of corresponding time series are often based on the wavelet transform
(Grossman and Morlet 1984, Daubechies 1992, Meyer 1992, Chui 1992, Mallat 1998).
Wavelets provide a tool for detecting periodicities in short, nonstationary data and for following
the temporal evolution of different rhythmic components in the case of multimode dynamics.
The wavelet transform of a signal x(t) is obtained as follows:

Wx(a, b) = 1√
a

∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt, (1)

where ψ([t − b]/a) is a translated and scaled version of the wavelet ‘mother’ function ψ(t),
with a and b characterizing the time scale and temporal localization, respectively, the asterisk
refers to the complex conjugate. Wx(a, b) are the wavelet coefficients. The choice of ψ(t)

depends on the problem to be solved. In the spectral analysis of nonstationary data, the Morlet
function is typically used,

ψ(t) = π−1/4 exp(j2πf0t) exp

[
− t2

2

]
. (2)

The selection of f0 allows us to search for a compromise between the localizations of the
wavelet in the time and frequency domains. We use here f0 = 1. The relation between the
scale a and the central frequency for the ‘mother’ function f in this situation is f = 1/a.

In addition to the wavelet coefficients Wx(a, b) or Wx(f, b), the energy density of the
signal x(t) in the time-scale plane can be estimated: Ex(a, b) = Ca−1|Wx(a, b)|2, with C
being a normalizing parameter that depends on the choice of ψ(t). The time-averaged energy
density is an analog to the Fourier power spectrum. Ex(f, b) can be treated as a surface in
three-dimensional space whose sections at fixed time moments correspond to the local energy
spectrum. Considering the dynamics of local maxima of Ex(f, b) it becomes possible to reveal
the time evolution of spectral peaks. The latter gives us a possibility to extract time series of
the instantaneous frequencies and amplitudes associated with the physiological rhythms being
of interest.

In the case of interactions, the faster mode can be modulated by a slower physiological
process. Aiming to study modulation properties, we proposed the double-wavelet technique
(Sosnovtseva et al 2004, 2005a) that consists in the following. The instantaneous frequency
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or amplitude of the fast mode is considered as input signal for the second wavelet transform
(1). Again, the wavelet coefficients and the energy density are estimated and the simplified
visualization of the energy density is considered (i.e., the dynamics of only local spectral
peaks). The latter will contain information about all modes involved in the modulation process.
The second wavelet transform allows us to characterize deviations of the frequency/amplitude
of the fast mode associated with any slower processes. A detailed analysis of possibilities and
limitations of the double-wavelet technique is described in our previous work (Sosnovtseva
et al 2005b).

3. Multimode dynamics in renal autoregulation

Renal autoregulation is mediated by at least two different mechanisms, the tubuloglomerular
feedback (TGF) and the myogenic response of the afferent arteriole (Leyssac and Holstein-
Rathlou 1986, Holstein-Rathlou and Marsh 1994). The TGF mechanism produces a negative
feedback control that regulates the nephronal blood flow and, hence, the single-nephron
glomerular filtration rate and the tubular flow rate in dependence of the NaCl concentration of
the fluid that leaves the ascending limb of the nephron. As shown in early works by Leyssac and
Holstein-Rathlou (1986) and Holstein-Rathlou and Leyssac (1986), this feedback regulation
can become unstable and generate self-sustained oscillations in the proximal tubular pressure
with a typical period of 30–40 s. Similar oscillations can be detected in the distal tubular
pressure and, with a time delay of about 15 s, in the chloride concentration near the macula
densa (Holstein-Rathlou and Marsh 1994). While for normal rats the oscillations have the
appearance of regular self-sustained oscillations, highly irregular oscillations are observed for
spontaneously hypertensive rats (Holstein-Rathlou and Leyssac 1986). Thus, the development
of hypertension seems to be accompanied by a transition of the regulatory dynamics into a
state of deterministic chaos.

The myogenic mechanism represents the intrinsic response of the smooth muscle cells in
the vascular wall to changes in the TGF-signal as well as to other stimuli. This mechanism
operates in the 0.1–0.25 Hz frequency range. An increase of the transmural pressure elicits a
contraction of the vascular smooth muscle cells in the arteriolar wall causing vasoconstriction
and a reduction of the blood flow. Since both mechanisms act on the afferent arteriole to
control its hemodynamic resistance, the activation of one of the mechanisms modifies the
response of the other (Holstein-Rathlou et al 1991, Chon et al 1994, Feldberg et al 1995).

The individual unit of the kidney, the nephron, may thus be considered as a bimodal
oscillator that displays oscillations in its pressure and flow regulation at two different time
scales: a fast rhythm arising from the vasomotoric dynamics of the smooth muscle cells in the
afferent arteriole, and a slower rhythm produced by the delayed tubuloglomerular feedback.
However, analyses of tubular pressure recordings demonstrate that the nephron dynamics is
more complicated than this and not explainable by only two oscillatory modes. In particular,
wavelet analyses reveal the presence of additional very slow rhythmic components in the 0.002–
0.01 Hz frequency range whose physiological interpretation is less obvious. Particularly for
hypertensive rats, these very slow rhythmic components can be even more clearly expressed
in the power spectrum of tubular pressure recordings than the other modes. As illustrated
in figure 1(a), the spectral power associated with the rhythm at ≈0.005 Hz is larger than
that of the TGF-dynamics (≈0.035 Hz) and even larger in comparison with the power of the
myogenic mode (≈0.2 Hz). In the following, we will denote the very slow oscillations, the
TGF-oscillations and the myogenic modes as very low-frequency (VLF), low-frequency (LF)
and high-frequency (HF) dynamics, respectively. The presence of the VLF-rhythms can be
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Figure 1. (a) Power spectrum of tubular pressure recording from a spontaneously hypertensive
rat. The very slow oscillatory component (≈0.005 Hz) is even more pronounced than the other
rhythms. (b) Experimental time series showing pronounced oscillations with a period of about
200 s.
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Figure 2. Examples of the power spectra obtained in the VLF- and LF-ranges for a normotensive
(a), respectively, a hypertensive (b) rat.

visually observed in figure 1(b) where rather strong oscillations with a period of about 200 s
are seen.

We would like to emphasize, however, that the presence of such a pronounced VLF-mode
as seen in figure 1(a) does not reflect the typical situation. Most often the VLF-component,
while observable in the dynamics of both normotensive and hypertensive rats (figure 2), is
characterized by a rather low power relative to the other rhythms. In the spectrum displayed
in figure 2(a), for example, the VLF oscillations are very small as compared to the strong
TGF-mode. To make them more ‘visible’, a representation of this spectrum on a logarithmic
scale may be useful. For hypertensive rats (figure 2(b)), the amplitude of the TGF-rhythm
is usually significantly lower than in figure 2(a), and the VLF-dynamics is therefore more
pronounced in the power spectrum.

4. Experiments and statistical analysis

In order to focus the discussion on the typical phenomena in nephron multimode dynamics we
shall consider the average results of an extensive series of experiments. Animal preparation
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Figure 3. Averaged power spectra: over 32 recordings for normotensive rats (a), and over 42
recordings for hypertensive rats (b). Besides the slow (LF) and the fast (HF) dynamics there
is a very slow component. The insets show more detailed spectra in the VLF-frequency range.
Aiming to illustrate different details of multimode dynamics the full spectra are given in logarithmic
frequency scale while inserts are shown in normal frequency scale.

and experimental procedure were described by Yip et al (1992). We use here the same data set
as in the mentioned work (Yip et al 1992). These data have been the basis of several our studies
devoted to interaction phenomena (Sosnovtseva et al 2002, 2007a, Marsh et al 2005). In the
previous works we have analyzed, however, only two modes in nephron dynamics without the
consideration of the VLF component and its influence on faster dynamics.

Experiments were performed in male Sprague-Dawley rats, 250–300 g BW, and in
10–12 week old spontaneously hypertensive rats (SHR). Anesthesia was induced with 5%
and maintained with 1% Halothane in a gas mixture containing 25% oxygen and 75%
nitrogen. Tubular pressure data from single nephrons of 13 normotensive rats and 18
SHR were measured. For this purpose the left kidney was exposed through a midline
incision, immobilized in a Lucite ring and superfused with saline preheated to 37 ◦C. Paired
measurements of tubular pressure were made with the servo-nulling technique. The 13
normotensive rats gave 16 pairs of time series (6 pairs from 3 rats and 10 pairs from 10 rats).
The 18 SHR provided 21 pairs of time series (6 pairs from 3 rats and 15 pairs from 15 rats).
Proximal tubular pressure was measured in two or three tubules simultaneously. Tubular
pressure data were recorded through a low-pass Butterworth filter with a cutoff frequency of
1.5 Hz. The data were then digitized at 4.8 Hz. The respiratory signal was removed with
a Kaiser–Bessel low-pass filter with a cutoff frequency of 0.5 Hz and attenuation of 50 dB.
The calculations reported in this paper were performed on the output of the Kaiser–Bessel
filter.

Figure 3 shows that all the above oscillatory modes are distinguishable in the averaged
power spectra for the two strains. It is also seen that the VLF-mode is more pronounced for
hypertensive than for normotensive rats. Comparison of the power spectra in figure 3 shows that
the amplitude of the LF-mode for normotensive rats is significantly larger than the amplitude of
the other rhythmic components with the VLF and HF dynamics displaying somewhat similar
low amplitudes (figure 3(a)). A different situation is observed for hypertensive rats. Here, the
VLF is much stronger (figure 3(b)) with amplitudes comparable to those of the LF-dynamics.

The finite time of the experimental recordings (usually about 1000 s) limits our spectral
analysis to frequencies above 0.002 Hz. We used the restriction that the analyzed data series
should contain more than two periods of very slow oscillations. The averaged frequency of
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Figure 4. Fraction of time series showing power ratios between different frequency bands for
normotensive (a, c) and hypertensive (b, d) rats, respectively. PVLF, PLF and PHF were calculated
as integrals of power spectra over the corresponding frequency intervals. The total number of
recordings is 74 with 32 recordings from normotensive rats and 42 from hypertensive rats.

the VLF-mode in figure 3(b) takes a value of about 0.005 Hz, i.e. at least five periods of
this mode can be distinguished in the tubular pressure data. This is enough to make reliable
spectral estimations with the wavelet transform. It is known that wavelet analysis has some
problems with a correct representation of both the amplitudes of the rhythmic components and
the integrated power spectrum over some frequency range (Maraun and Kurths 2004). Thus,
if the real amplitudes are estimated, the integrated power does not correspond to results of the
Fourier analysis and vice versa. In the present paper, we aimed to obtain correct values of
amplitudes and, hence, consider only ratios of powers in different frequency bands.

To illustrate the distinctions between the two strains of rats in more detail let us consider
the ratio of the powers associated with the various spectral regions. Based on figure 3,
we expect that the two strains should display significant differences in these power ratios.
Figure 4 confirms this: the strongest differences are observed for the VLF and the LF ranges
(PVLF/PLF in figure 4, panels (a) and (b)). More than 55% of the normotensive rats and only
5% of the hypertensive rats are characterized by a ratio PVLF/PLF < 0.1. Nephrons from
normotensive rats thus demonstrate low power in the VLF-range in comparison with nephrons
from hypertensive rats. The opposite situation is true for the LF-mode. The hypertensive
rats show only small amplitude of the TGF-based rhythms while the normotensive rats
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Figure 5. Distributions of powers in the tubular dynamics for normotensive (open circles) and
hypertensive (filled circles) rats. Power ratios for individual time series are plotted on a logarithmic
scale.

demonstrate larger oscillations. Figures 4(a), (b) display relatively strong distinctions between
the normotensive and the hypertensive rats. Differences in the functioning of individual
nephrons of the two strains occur also for other oscillatory components. Figures 4(c),
(d) show that the ratio PLF/PHF takes rather low values for hypertensive rats as compared
with normotensive rats. Thus the highly irregular dynamics observed in hypertensive rats
occurs at relatively low amplitudes of the TGF-mediated oscillations. On the other hand,
normotensive rats demonstrate a higher variability in the amplitude of the TGF-mode and, as
a consequence, in the ratio PLF/PHF. Figure 5 illustrates these distinctions in another way.
It is clearly seen that characteristics of normotensive (open circles) and hypertensive (filled
circles) rats are well separated in this figure.

5. Modulation properties of TGF-dynamics

In nonlinear systems, the instantaneous amplitude and frequency of one oscillatory mode
can be modified by the presence of a slower mode. As mentioned in the introduction, a
well-known example is the way the beating of the heart is modulated by the respiratory cycle
(Schäfer et al 1999). Examination of this phenomenon can help us characterize the degree of
coupling between the two systems (Rosenblum and Pikovsky 2001, Smirnov and Bezruchko
2003) and, at least qualitatively, predict situations in which the two systems will synchronize.
Investigations of this type have recently been used, for instance, to characterize anesthetic
depths (Musizza et al 2007).

The purpose of this section is to examine to what extent the presence of the very low-
frequency oscillations modulate the instantaneous frequency and amplitude of the TGF-
mediated oscillations for the two strains of rats. Figure 6 illustrates examples of how the
characteristics of the TGF-dynamics can change in accordance with the slower processes.
The instantaneous frequency of the VLF-rhythm can show significant variations (≈0.0025–
0.01 Hz) (figure 6(a)). This means that the VLF-oscillations can have a very complicated
effect on the individual nephron dynamics and this effect cannot be removed by a simple high-
pass filtering of the experimental data as is typically used to detrend experimental recordings.
Variation of the instantaneous frequency of the TGF-mode results in the absence of a sharp
peak in the power spectrum computed from the tubular pressure data (see, for instance, the
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Figure 6. The instantaneous amplitude (a) and instantaneous frequency (b) of the TGF-mode vary
slowly as these variables are modified by the presence of a very slow oscillation in the nephron
dynamics. The two curves were computed from the same time series.
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Figure 7. Distribution of depths of frequency and amplitude modulation of the TGF-mediated
mode by the VLF-dynamics. Dashed lines represent the average values of the two depths of
modulation. Hypertensive rats clearly display the higher amplitude and frequency modulations.

inset in figure 3(a)). This variation can presumably even lead to the disappearance of the VLF-
rhythms in the averaged power spectrum for a large group of nephrons. Nevertheless, this
dynamics has an effect on the two mechanisms of renal autoregulation, the tubuloglomerular
feedback (figure 6) and (as we shall show in the next section) the myogenic response of the
afferent arteriole.

The modulation properties are expected to be different for normotensive and hypertensive
rats. As illustrated in figure 7, the first group is characterized by lower values of the
modulation depth for both, the frequency (Mf ) and the amplitude (Ma) modulation. For
amplitude modulation, Ma = �A/A where �A = (Amax − Amin)/2 and A is the mean
value. For frequency modulation, Mf = �ω/�, where �ω = (ωmax − ωmin)/2 and � is
the mean frequency. For nonstationary processes, A(t) and �(t) are determined via a single-
wavelet technique while �A(t) and ��(t) are determined via the double-wavelet technique.
Inspection of the figure clearly shows that there is a well-defined distinction between the
two strains in the case of the amplitude and the frequency modulation. The mean values of
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Figure 8. Characteristic power spectra of the modulation signal for the TGF (a) and the myogenic
(b) dynamics.

the modulation depth over all data are indicated by the dashed lines in figure 7. Inspection
of the figure also reveals that the depth of modulation and, hence, the nonlinear interaction
between the involved mechanisms, is stronger for hypertensive than for normotensive rats.
The number of nephrons with a frequency modulation that exceeds the average value is higher
for hypertensive rats (60%) than for normotensive rats (26%). For the amplitude variations
we obtained 71% and 32%, respectively.

6. Modulation properties of myogenic dynamics

Compared with the TGF-mode, the modulation properties of the myogenic dynamics are even
more complicated. In a couple of recent papers (Sosnovtseva et al 2002) we have discussed
the features of mode-to-mode interaction considering the nephron as a bimodal oscillator.
However, the HF-dynamics will be influenced simultaneously by several rhythmic components.
For the LF-dynamics considered in section 4, the spectrum of the modulation signal was rather
simple (see, for instance, figure 8(a), where it contains only a single oscillatory component)
and there were no obvious problems in estimating the instantaneous modulating frequency.
For the HF-mode, the same spectrum becomes more complicated (figure 8(b)) since both the
VLF and the LF dynamics contribute to the modulation of the myogenic mechanism. To detect
the influence of each of these modes separately we need to extract the temporal variations
of the instantaneous frequencies and amplitudes for these oscillatory components. Such an
extraction can be performed by means of double-wavelet technique, and the contribution of
each mode to the modulation process can thus be obtained. The double-wavelet method is
more effective in the case of nonstationary multimode dynamics than simple estimations of
the modulation depth that use, e.g., the minimal and the maximal values of the amplitude of
the modulated oscillations. The double-wavelet approach accounts, for instance, for the fact
that the estimated characteristics can vary strongly in time.

Figure 9 illustrates the distribution of depths of the frequency and the amplitude
modulation of myogenic dynamics by the VLF-mode for hypertensive (filled circles) and
normotensive (open circles) rats. In line with the results in the previous section, hypertensive
rats are characterized by a strong mode-to-mode interaction. This is reflected in both, the
amplitude and the frequency variations of the HF rhythmic components. Here, the relative
number of nephrons with an amplitude modulation exceeding the average value is 69% for
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Figure 9. Distribution of depths of frequency and amplitude modulation of the myogenic mode
by the VLF-dynamics.

Table 1. Depths of amplitude (Ma) and frequency (Mf ) modulation (mean values ± standard
deviations).

Ma Mf

Normotensive Hypertensive Normotensive Hypertensive

LF-mode by VLF 0.16 ± 0.07 0.27 ± 0.07 0.36 ± 0.32 0.68 ± 0.39
HF-mode by VLF 0.19 ± 0.05 0.27 ± 0.06 1.41 ± 0.94 2.52 ± 1.15
HF-mode by LF 0.40 ± 0.14 0.56 ± 0.11 0.77 ± 0.33 1.40 ± 0.41

hypertensive rats and only 21% for normotensive rats. The corresponding results for the
frequency modulation are 57% and 24%, respectively.

A study of interaction between the TGF and myogenic mechanisms in the form of the
frequency and the amplitude modulation reveals a similar distinction between normotensive
and hypertensive rats as in the case of the VLF-dynamics. As shown in our recent work
(Sosnovtseva et al 2005b), the spontaneously hypertensive rats demonstrate a higher depth
of modulation and therefore a stronger interaction between the two mechanisms in renal
autoregulation. Table 1 consolidates all the discussed statistics of nephrons for the two rat
strains according to their depth of frequency and amplitude modulation estimated from tubular
pressure recordings.

Amplitude modulation of the myogenic mode by the TGF-mechanism has previously
been discussed by Chon et al (1994). The effect of frequency modulation appears to be
less well examined both in renal and in other vascular beds. Preliminary studies of this
phenomenon have been reported in our recent publications (Sosnovtseva et al 2004, Marsh
et al 2005).

7. Discussion

Interpretation of biological time series is often hampered by the nonstationarity of the available
data. In most cases the effect of nonstationarity cannot be fully removed by means of trend
correction procedures because of the continuous adjustments that take place as the living
system adapts to changing internal or external conditions. Besides, it may be rather difficult
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to reveal entrainment phenomena that occur only for short time intervals with the standard
time series techniques. Application of standard methods based, e.g., on the Fourier transform
to nonstationary data can lead to a number of misinterpretations of the obtained results as a
simple consequence of limitations of the statistical tools. Observation of two peaks in the
power spectrum of a physiological process, for instance, can correspond to two essentially
different situations: the system may display two independent modes, or there is only one mode
whose instantaneous frequency changes in time from one value to another.

During the last years, a variety of new tools have become available to the study of
nonstationary dynamics of biological systems (Buldyrev et al 1993, Peng et al 1995, Ivanov
et al 1999, Stanley et al 1999), with wavelet-analysis representing one of the most powerful
approaches (Grossman and Morlet 1984, Daubechies 1992, Meyer 1992, Chui 1992, Mallat
1998). In order to study synchronization and modulation phenomena, some extensions
of the wavelet analysis are needed. Adison and Watson (2004) recently proposed the so-
called ‘secondary wavelet feature decoupling method’ that considers two computations of the
wavelet transform followed one by the other. Independently, a similar idea (‘double wavelet
analysis’) was proposed in our work (Sosnovtseva et al 2004) with the aim of characterizing the
modulation phenomena in renal autoregulation. This new approach allows us to study mode-
to-mode interaction even in the case of fairly rapid changes of the instantaneous frequencies
of the rhythmic components. The double-wavelet technique has shown its effectiveness both
in analysis of mathematical models of biomedical systems (where it was possible to confirm
the obtained results) (Sosnovtseva et al 2005b) and in data analysis (Marsh et al 2005). In the
present paper, the double-wavelet approach was used to study interaction of three modes in
the dynamics of individual units of the kidney (the nephrons).

The concrete results we have obtained from the analysis of a total of 74 recordings may
be summarized as:

• Normotensive rats display a regular and strong TGF-mediated rhythm, often with clear
evidence of nonlinear dynamic phenomena in the form of harmonics and subharmonics.

• Hypertensive rats generally display less pronounced TGF-oscillations. On the other
hand, the presence of strong components at very low frequencies is more common in
hypertensive rats.

• Modulation of the TGF-rhythm by the very low-frequency modes is relatively weak in
normotensive rats and much stronger in hypertensive rats.

• For the myogenic oscillations, the frequency modulation produced by the VLF mode is
also much stronger in hypertensive rats than in the normotensive rats.

The obtained results show essential differences in the mode-to-mode interaction between
normotensive and hypertensive rats for all the oscillatory components that we can detect in the
individual nephron functioning. They are in clear agreement and show that hypertension is
associated with an increased strength of interaction between most of the mechanisms of renal
regulation. The observed interactions between the VLF-dynamics and the two mechanisms
of renal autoregulation are new, and it seems important to reveal their different manifestations
between the normal and pathological state.
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Altinok A, Lévi F and Goldbeter A 2007 Optimizing temporal patterns of anticancer drug delivery by simulations of
a cell cycle automaton Biosimulation in Drug Development ed M Bertau, E Mosekilde and H Westerhoff (New
York: Wiley-VCH) p 275

Barfred M, Mosekilde E and Holstein-Rathlou N-H 1996 Bifurcation analysis of nephron pressure and flow regulation
Chaos 6 280
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