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Abstract
The influence of extremely low frequency magnetic fields (ELF-MFs) on
human physiological processes and, in particular, on motor activity is still not
established with certainty. Using the wavelet-transform approach, changes in
the characteristics of human finger micromovement are studied in the presence
of a low intensity MF centred at the level of the head. Different approaches
to nonstationary signal analysis involving real as well as complex wavelet
functions are considered. We find evidence that ELF-MFs lead to more regular
postural tremor and more homogeneous energy distribution.

Keywords: physiological tremor, magnetic fields, wavelet analysis, Hölder
coefficients, local intermittency

1. Introduction

In our daily lives we are all exposed to different sources of extremely low frequency
(ELF, below 300 Hz) and low intensity (below 2 mT) magnetic fields (MFs), such as
personal computers, domestic electrical appliances, residential power installations, etc (Gandhi
et al 2001, Gauger 1985). The influence of such ELF-MFs on the central and peripheral
nervous system remains open and to some extent controversial. The main reason for this
is the obvious problems of detecting ELF-MF effects in classical neurophysiological signals
such as electroencephalograms or evoked potentials. Experimental recordings of the brain
electrical activity are contaminated by the presence of the MF itself (Cook et al 2004), which
significantly complicates attempts to reveal changes of the neurophysiological parameters.
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Being a highly sensitive indicator of the activity of the nervous system, physiological tremor
offers an opportunity to avoid this problem and thus to study, although indirectly, possible
MF-induced effects on the activity of the central nervous system.

Tremor is a rhythmical involuntary oscillatory movement of a body part which depends
on the recording conditions and the body part examined (Beuter et al 2003). It has a variable
amplitude and a relatively stable frequency. It is now generally accepted that physiological
tremor is a peripheral manifestation of a central oscillatory activity. According to McAuley
and Marsden (2000) tremor has a multifactorial origin including central nervous system
oscillatory activity, motor unit firing properties starting firing at around 8 to 10 Hz, limb
mechanical resonance and reflex loop resonance (the stretch reflex is a negative feedback loop
and the loop time is about 50 ms). Most of the normal physiological tremor frequency content
is between 5 and 15 Hz, and it is influenced by many factors (temperature, smoking, stress,
fatigue, etc) (Wachs and Boshes 1961). In general, however, healthy people demonstrate
weak-amplitude physiological tremor with frequencies around 8–12 Hz (Elble and Koller
1990). Tremor appears to follow a continuum between its physiological and pathological
manifestations. We have observed that, going in the direction of abnormality, tremor frequency
decreases and its frequency content becomes more organized. That is, the more regular the
signal, the more abnormal (sometimes pathological) is the tremor. The latter was discussed,
for instance, in the work of Edwards and Beuter (1999). In addition, the lower the frequency
of tremor, the more abnormal (sometimes pathological) is the tremor. Going in the direction
of pathology, tremor amplitude usually increases and tends to fluctuate (Edwards and Beuter
1999).

If ELF-MFs influence human neurophysiological processes, this should be revealed as
changes in the physiological tremor, especially during a postural maintenance task which leads
to activation of neuromuscular processes. This situation may be realized, for instance, when
a person maintains the index finger in a horizontal position (postural tremor). The effects of
low intensity MF (1 mT, 50 Hz) on human motor behaviour were considered in a recent paper
(Legros and Beuter 2005), using standard statistical analysis of the experimental data. This
paper aimed to reveal any possible responses of ELF-MF in index finger microdisplacements.
It was shown that the MF changes the energy distribution at low frequencies (2–4 Hz). A
subsequent work (Legros et al 2006) exploiting the technique of wavelet analysis did not
show any effect of the application of MFs on the local frequency organization of postural
tremor. It was concluded, however, that the effects of ELF-MFs could be comparable to those
of relaxation. This conclusion allows us to suppose that the ELF-MF can change correlation
properties of postural tremor data. Note that quantification of the corresponding changes is
limited by instability of the standard correlation analysis as applied to short noisy time series. A
study of correlation properties based on the Hölder exponents (Muzy et al 1994) has a number
of advantages in the latter case. In particular, a variance of the estimated characteristics
can be significantly reduced (Dumsky 2005). Within the framework of the Hölder analysis,
changes of signal characteristics can be described in terms of the ‘smoothness’ of tremor data.
Additionally, we study other possible effects in postural tremor caused by the ELF-MF such
as the homogeneity of the energy distribution. We show that the use of Hölder analysis and of
a local intermittency measure allows us to reveal short-term changes in signal structure that
occur during 5–10 s.

2. Experiments

Experiments were performed on volunteers from the personnel of a French electricity company
‘Electricité de France’ (24 men, aged between 20 and 50 years, the average age is 37.8 ± 8).
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Figure 1. (a) Experimental sequence involving two ‘off/on’ and two ‘on/off’ transitions,
(b) examples of experimental data corresponding to the states 2 and 4.

All participants completed a screening questionnaire testifying that they did not use drugs
or any form of medication, had never experienced an epileptic seizure, had no limitation of
hand or finger movements, did not suffer from chronic illness and did not carry cardiac or
cerebral pacemakers. This information was verified by the company’s occupational medicine
service. The experimental protocol was approved by the Operational Committee for Ethics of
the CNRS (Centre National de la Recherche Scientifique, France), life sciences section.

Aiming to reach identical environmental conditions, all subjects were tested at the same
time of day (9.00 AM) and during a single session (Legros and Beuter 2005). The room
temperature was constant (23 ◦C) and tests were done under natural lighting. Subjects were
asked to refrain from smoking and coffee drinking in the morning of the test. They sat on a
chair placed in the middle of the device that generated a homogeneous 50 Hz, 1.0 mT MF
centred at the level of the head. The dominant forearm was placed in a prone position on
an armrest and the hand was placed with the palm facing towards the ground on a moulded
clay support. A small piece of white cardboard was fixed to the index finger nail. A Class
II laser diode (Micro laser sensor LM100, series ARN12, Matsushita Electronic Work, Ltd),
located vertically 8 cm above the piece of white cardboard and pointing towards the ground,
transmitted a beam recording the vertical finger displacement with a resolution of 5 µm and
a sampling rate of 1000 Hz. Subjects had to control their index finger’s vertical position
using a feedback line displayed on an oscilloscope: They had to maintain this feedback line
superimposed as closely as possible on a static target line. All participants wore ear plugs and
an anti-noise helmet to be isolated from environmental noise.

The ambient geomagnetic field was measured in the testing room with a handheld digital
magnetometer µMAG-02WB (Macintyre Electronic Design Associates, Inc., Dulles, VA)
and was 48.7 µT. It was oriented at 23.8◦ compared with the alternating MF generated by the
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exposure system. Since this is a static field, it does not induce any electrical current in the body
and did not therefore influence the results. Background ambient alternating MF produced by
surrounding electric and electronic sources was also measured with an EMDEX Lite monitor
(ENERTECH Consultants, Campbell, CA) and was less than 0.01 µT. It is 100 000 times less
than the field used in the experiment and could not then influence the results as well.

Each experimental session lasted 65 min and included two sequences of postural tremor
testing. A session was composed of 16 conditions of tremor testing, each lasting 62 s and
spaced with a 3 min resting period in between. One sequence (real) contained four MF
transitions with 4 min in between (two ‘off/on’ and two ‘on/off’, see figure 1(a)). Time
series of 62 s centred on each MF transition were recorded. The other sequence (sham) was
used as a control: during this sequence, the MF was never present, even in the so-called ‘on’
condition, but the time course of tremor recordings was similar to the real exposure sequence.
A computer controlled the course of the experiment, which was conducted following a double
blind, counterbalanced procedure (neither the subject nor the experimenter knew when the
MF was present). The approach was designed to emphasize rapid changes occurring in
physiological tremor induced by the application of low frequency MFs and to reduce the
significance of possible confounding factors. The use of sham sequences as control conditions
ensures the external validity of the results: because the subject has no information whether
the MF is actually presented, it is possible to reveal actual changes of postural tremor induced
by the MF. ‘Sham’ sequences allowed us to estimate a range of possible changes of different
characteristics (not caused by the MF).

Velocity data obtained by numerical differentiation (simple backward difference) of the
recorded time series of vertical finger position were used in subsequent analyses. The presence
of MFs produced artefacts at the grid frequency (50 Hz). Since tremor occurs in the lower
frequency domain, a low-pass filtering of the data was applied with a cut-off frequency 40 Hz
(using a filter with infinitely sharp characteristics, obtained through fast Fourier transform
followed by the inverse transform). Aiming to remove a slow nonstationarity (trend) from
the experimental recordings, an additional high-pass filtering with the cut-off frequency 2 Hz
was used at the stage of data preprocessing (applying a similar filtering procedure). A further
numerical analysis of tremor data was performed based on custom programs written in C.
Statistical tests are performed using Matlab (The Mathworks, Natick, MA).

3. Wavelet analysis

As previously mentioned, Legros and Beuter (2005) have recently studied the effects of MFs on
physiological tremor using standard methods of statistical analysis. This included estimations
of amplitude variations, of different characteristics of the probability density function and of
the spectral power distribution. This study revealed some changes in the power spectra in
the presence of ELF-MF. Preliminary wavelet analyses were performed in a preceding work
(Legros et al 2006). In particular, this work suggested that the effects of ELF-MFs could be
comparable to those of relaxation.

Let us emphasize, however, that the analysed data are quite nonstationary (figure 1(b)).
This leads to a variety of problems concerning the interpretation of the results obtained
by standard statistical methods. In particular, the presence of nonstationarity reduces the
reliability of quantification of amplitude variations and broadens the probability density
function. The complex inhomogeneous dynamics of living systems is often studied more
effectively by using specialized tools whose efficiency does not depend on the requirement of
stationarity. At present, one of the most efficient tools is probably wavelet analysis (Grossman
and Morlet 1984, Chui 1992, Mallat 1998, Marsh et al 2005, Sosnovtseva et al 2005).
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The wavelet transform of a signal x(t) has the following form:

W(a, b) = 1√
a

∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt, (1)

where ψ is the basis function (the wavelet), and a and b are the scale and time displacement
parameters. W(a, b) are referred to as the wavelet coefficients. The choice of the basis
function ψ depends on the aim of the research. Different functions have different features
in both the time and the frequency domains. Hence, the proper selection of ψ gives an
opportunity to reveal different aspects of the structure of the analysed process. The purpose of
the following sections is to study features of tremor data with more refined wavelet-based tools
such as Hölder analysis and a local intermittency measure (Astaf’eva 1996). As mentioned
above, these tools allow us to reveal short-term changes in the signal structure.

3.1. Analysis based on real wavelets

Some features of the signal x(t) do not depend on the basis function ψ . One such feature
is the local regularity that is usually estimated within the framework of multifractals (Muzy
et al 1993, 1994). This estimation is performed with real wavelets constructed, e.g., by
differentiation of the Gaussian function:

ψ(m)(θ) = (−1)m
∂m

∂θm

[
exp

(
−θ2

2

)]
. (2)

In this paper we consider m = 1 (‘WAVE’ wavelet) and use ψ(1)(θ) when computing the
transform (1) with real wavelets. θ = t−b

a�t
, where �t is the sampling step (�t = 0.001 s). The

result of the wavelet transform (1) can be considered as a surface of coefficients W(a, b) in
a three-dimensional space. The most important information about this surface is contained in
the skeleton, i.e. in the lines of local extrema of the coefficients W(a, b) that can be extracted
by fixing the scale a and changing the displacement parameter b. As illustrated in figure 2,
the result is a number of lines in the b– log a plane. Some of these lines are very short and
can be revealed only at small scales; other lines are much longer. Each line originates at
a point b where the analysed signal x(t) has some specific feature (singular behaviour for
a → 0). The statistical analysis of singularities in nonstationary processes can be performed
with the ‘wavelet-transform modulus maxima’ (WTMM) technique (Muzy et al 1993). A
detailed description of this approach and its application to experimental data may be found in
the review by Muzy et al (1994).

The basic idea of the WTMM involves the construction of the so-called partition functions
Z(q, a) by extracting the skeleton from the surface W(a, b) according to

Z(q, a) =
∑

l∈L(a)

|W(a, bl(a))|q . (3)

Here, L(a) is the set of all lines of modulus maxima for the wavelet coefficients, i.e. the
lines of maxima of the values |W(a, b)| existing at the scale a. The value bl(a) defines the
maximum related to the line l. The unit-less parameter q defines the range of scales being
analysed as described below. As explained in the above cited review (Muzy et al 1994), the
partition functions are assumed to demonstrate the following power-law dependence:

Z(q, a) ∼ aτ(q), (4)

where τ(q) are the scaling exponents. The statistical analysis of singularities is performed
in terms of the Hölder exponents h(q) = dτ(q)/dq and the singularity spectrum D(h) =
qh − τ(q) (Muzy et al 1994). The Hölder exponents characterize the presence of correlations
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Figure 2. Skeleton computed for the signal shown in figure 1(b) (‘on’ condition). Each line
originates at a point where the analysed signal x(t) has singular behaviour at a → 0. Here, we
consider the range log a ∈ [0.1; 7.5]. Aiming to reduce possible pitfalls of the Hölder analysis,
further estimations of the scaling exponents are performed for the range log a ∈ [0.7; 4.0].

of different types in the analysed process, e.g., anti-correlated (h < 0.5) or correlated (h > 0.5)

dynamics, absence of correlations (h = 0.5) and conformity of the signal x(t) with classical
examples of random processes: 1/f noise (h = 1), Brownian motion (h = 1.5), etc. In
general, the ‘smoother’ the signal x(t), the greater the exponents h(q) are. When performing
a study of correlation properties for short noisy data, the use of Hölder exponents can have
some advantages over the classical correlation function, in particular, a higher stability of the
estimated characteristics (Dumsky 2005). It is known that the wavelet-based methods have
different limitations and pitfalls (Maraun and Kurths 2004, Veneziano et al 1995, Sosnovtseva
et al 2005). In particular, the singularity spectrum D(h) can lead to different misinterpretations
of the actual dynamics (Veneziano et al 1995). Nevertheless, the averaged value of the
Hölder exponents allows one to characterize even small changes of correlation properties.
The partition function Z(q, a) describes the power-law dependences (4) at q < 0 for weak
singularities or small fluctuations and at q > 0 for strong singularities or large fluctuations.
Aiming to estimate the scaling exponents τ(q), we use the range log a ∈ [0.7; 4.0].

3.2. Analyses based on complex wavelets

Today, spectral analyses of nonstationary processes are often performed with the wavelet
transform (1), using a complex basis function ψ (Grossman and Morlet 1984, Chui 1992).
The advantages of this approach in comparison with a classical spectral analysis based on a
finite-time Fourier transform have been widely discussed (Chui 1992, Mallat 1998). If we only
need to determine the time-averaged spectral components presented by the analysed signal,
then the classical approach can be successfully applied. However, if we are interested in the
temporal evolution of the rhythmic components, then the wavelets have clear advantages.

Probably the most popular complex basis function is the Morlet wavelet whose simplified
expression can be written in the form

ψ(θ) = π−1/4 exp(j2πf0θ) exp

[
−θ2

2

]
. (5)

Function (5) is used in our study when performing analysis based on complex wavelets. The
transformation (1) represents a two-dimensional decomposition of a scalar time series with
the frequency (f = f0/(a�t)) and time (b) treated as independent quantities. Unlike the
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Figure 3. Time-frequency spectrum illustrating the complex structure of spectral components for
the signal shown in figure 1(b) (‘on’ condition).

case of a real function ψ , analyses based on the complex wavelet (5) typically deal with
the energy density E(f, b) = |W(f, b)|2 instead of the wavelet coefficients W(a, b). The
energy density also represents a surface in a three-dimensional space whose sections at fixed
time moments b = t∗ correspond to the local energy spectrum. The main information about
the surface E(f, b) is associated with the dynamics of its local maxima, i.e. with the time
evolution of instantaneous frequencies of the main rhythmic components. Their extraction can
be realized by analogy with the skeleton in section 3.1. The difference, however, consists in the
fixation of the displacement parameter b and the choice of local peaks of the surface E(f, b)

under variation of the scale parameter a (or the frequency f ). As a result, the instantaneous
frequencies of all rhythms that are present in the analysed signal will be detected. An example
is shown in figure 3, where we consider the range f ∈ [2; 20] Hz. The required range of a is
estimated depending on the chosen frequencies.

In addition to the local spectra there are a number of other characteristics estimated from
the energy density including, e.g., the measure of local intermittency (local deviations from
the average value of energy at each scale). The latter quantifies the inhomogeneity of the
energy distribution (Astaf’eva 1996):

I (f, b) = E(f, b)

〈E(f, b)〉 . (6)

Here, the angular brackets denote averaging over time, i.e. over the parameter b. As a
characteristic of the inhomogeneity, we suggest using the standard deviation of the measure
I (f, b) from its mean value 〈I (f, b)〉 = 1. When dealing with noise-like processes such
as physiological tremor data (figure 1(b)), averaging within some window in the frequency
domain may be useful to smooth out strong variations of the measure I (f, b).

4. Results

4.1. Analysis of local regularity with real wavelets

Because of the ability of neural systems to adapt to external signals on a variety of different
time scales, our study of the ELF-MF-induced effects on physiological tremor is performed
using short time intervals after the ‘off/on’ transitions (states 2 and 6 in figure 1(a)) and after
the ‘on/off’ transitions (states 4 and 8). These short time periods involve transient processes,
and the application of specialized tools for nonstationary data analysis is, therefore, needed.
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Figure 4. Differences in a local regularity in velocity data between the ‘on’ and ‘off’ conditions for
the sequence ‘real’ (a representative example from one subject). Singularity spectra (a) and Hölder
exponents (b) are estimated for the signals in figure 1(b). The shift of the singularity spectrum
means changes of the correlation properties of the analysed time series. An increase of h(q) means
that the process becomes ‘smoother’ (it is close to the Brownian motion in the ‘on’ condition from
the viewpoint of statistical characteristics). The results are obtained using the ‘WAVE’ wavelet.

Figure 4 illustrates an example of possible changes in physiological tremor during the
exposure, namely, changes of a local regularity and correlation properties. Here, the analysed
velocity data in the ‘off’ condition can be treated as an inhomogeneous random process
resembling a normal Brownian motion at small time scales and as 1/f noise at larger time
scales. The transition to the ‘on’ condition increases the values of the Hölder exponents
(figure 4(a)), resulting in the displacement of the singularity spectrum (figure 4(b)). This
indicates that the signal becomes ‘smoother’.

The characteristics of physiological tremor varied among the participants. Nevertheless,
the above effect (an increase of h during the ‘on’ condition) could be observed in the group
average (figure 5, black circles). Although this effect is fairly weak as compared to the
standard deviation for a group, we can therefore conclude that the presence of low intensity
MFs leads to ‘smoother’ processes. Note that similar changes of the local regularity were not
observed for the ‘sham’ sequence where the MF was not present, even during the ‘on’ condition
(figure 5, white circles). We have applied an ANOVA statistical test to the experimental results
with p = 0.05. This has shown MF-induced changes of signal structure for ‘real’ sequences
(F = 3.32) and absence of clear changes for ‘sham’ sequences (F < Fcr = 2.56), where Fcr

is a critical value estimated from the table of F-distributions for the chosen p.
Consideration of other basis functions, e.g., the ‘MHAT’ wavelet (m = 2 in (2)) leads

to similar conclusions. We did not find notable changes in the structure of the skeleton
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Figure 5. Changes observed in the local signal regularity. The circles indicate mean values
over a group of 48 data sets collected from 24 individuals. The error bars denote inter-individual
variations (standard deviation). A slight increase of the Hölder exponent can be detected for the
‘real’ sequence (mean value of h increases by 2.7%). The ‘sham’ sequence shows no effect (the
difference between the ‘off’ and ‘on’ conditions is about 0.5%).

between the ‘on’ and ‘off’ states (F < Fcr), i.e. in the number of lines L of the local extrema
(for the same function ψ); the existing distinctions occurred only in the scaling behaviour
of the partition functions Z(q, a) and they can therefore be identified from the singularity
spectra.

4.2. Data analysis with complex wavelets

Complex wavelet functions provide an opportunity to perform a local spectral analysis of
nonstationary processes and to estimate the global energy spectrum, an analogue to the classical
power spectrum. We have attempted to observe variations in tremor signal by computing the
spectral powers in different ranges of the energy density E(f, b). This analysis has not
revealed significant differences and we have, therefore, focused our attention on estimating
the local intermittency (6). For this purpose, the wavelet transform (1) was computed with the
resolution 0.1 Hz, f0 = 5. The standard deviation (σI ) of the measure I (f, b) was estimated
in the frequency range 2–15 Hz within the ‘sliding’ window of width 2 Hz. As illustrated in
figure 6(a), this allowed us to reduce strong variations of the considered characteristics and
to obtain a rather smooth dependence σI (f ). Moreover, inspection of the figure shows that
the energy distribution becomes more homogeneous in the ‘on’ condition, i.e. a transition to
a more ordered dynamics is observed.

By analogy with the Hölder exponents, the values of σI demonstrate essential variations
between subjects (figure 6(b)). Nevertheless, the ordering effect is only observed for the
‘real’ sequence when the MF was present in the ‘on’ condition; it does not occur for the
‘sham’ sequence (see figure 6(b)). The ANOVA statistical test (p = 0.05) gives the values
of F = 3.92 for ‘real’ sequences and F = 1.53 for ‘sham’ sequences. In other words, only
in the first case did we obtain significant distinctions (F > Fcr). Changes of the probability
distribution in the second case are fairly small and probably caused by random factors.

Changes of tremor characteristics can also be reflected in the local peaks of the two-
dimensional wavelet spectrum (figure 3). An increase in the number of points in this figure
has multiple interpretations. On one hand, the increase may be caused by the appearance of
additional spectral components. On the other hand, it may be associated with a higher stability
of the existing rhythmic contributions (if a rhythm disappears during some time periods, its
stabilization will result in the absence of interruptions). This is why an increase or reduction
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Figure 6. Averaged standard deviations of the local intermittency measure (a representative
example from one subject, the ‘real’ sequence) (a) and the results for all subjects (b). A reduction
of the value σI can be considered as an ordering effect that is observed only for the ‘real’ sequence
(the difference between the ‘off’ and ‘on’ conditions is ≈5.3% for the ‘real’ sequence and ≈0.6%
for the ‘sham’ sequence). The error bars denote inter-person variations (standard deviation).

in the number of local spectral peaks in figure 3 cannot be treated in terms of the complexity
measures. It is suggested to consider this number as a highly sensitive characteristic even to
small changes in the structure of the analysed time series.

This characteristic was estimated in two steps. First, the difference between the numbers
of local spectral peaks in the ‘on’ and ‘off’ conditions was calculated before each of the four
MF transitions (each number of local peaks was estimated within a sliding window of 2 Hz).
Further, we have looked for a sign of this difference (‘+’ if the difference increases and ‘−’ if
it decreases). By averaging over a group, the probability (P) of increase in the number of local
spectral peaks for the ‘on’ condition was defined (i.e. a relative number of time series for which
such an increase takes place). Second, we analysed how this probability was changed after the
MF transition. Figure 7 illustrates the results obtained for the range 2–5 Hz. Such a range was
considered because of previous works which suggested an effect of the MF on the proportion
of tremor low frequencies, going in the direction of a higher proportion of oscillations in the
2–4 Hz frequency band induced by the exposure (Legros and Beuter 2005, 2006). We can see
that the probability increases after the MF transition (figure 7, black circles). A similar effect
does not occur for the ‘sham’ sequence: the estimated values of P are close to 0.5, reflecting
the absence of clear distinctions in the structure of wavelet spectra between the ‘on’ and ‘off’
states. The value P = 0.5 means that the number of local spectral peaks increases in the ‘on’
condition for about half of the recordings and is reduced for the other half of the time series
(figure 7, white circles). Additionally, we performed the corresponding analysis for other
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Figure 7. Probability of an increase in the number of spectral peaks in the ‘on’ condition relative
to the ‘off’ state before and after the MF transitions (results for all subjects). The value P = 0.5
signals that distinction is impossible.

values of the parameter f0 in (5), namely, for f0 = 3 and f0 = 7. The obtained results are
rather similar to those presented in figure 7.

5. Conclusions

Effects of strong magnetic fields on human motor behaviour have been previously reported in
scientific publications. In particular, the works of Britton et al (1993) and Pascual-Leone et al
(1994) showed effects of transcranial magnetic stimulation (TMS) on human tremor. It has
been shown that TMS can reset pathological tremor in patients with essential tremor and with
Parkinson’s disease. However, these studies use MF several orders of magnitude larger than
the MF used in our study, and there is no evidence that the same brain mechanisms are involved.
The significance of a low-intensity MF remains unclear. According to Schnitzler et al (2006),
human brain functions including tremor are heavily contingent on neural interactions at the
single neuron and the neural population or system levels. These authors go on to suggest
that coupling of oscillatory neural activity provides an important mechanism to establish
neural interactions. It is possible to record whole-head magnetoencephalography (MEG)
during tremor with high spatial and temporal resolution and show noninvasively a coherence
between what is occurring in the brain and muscle activations (Rothwell 1998). MEG has
revealed the presence of a physiological cerebral network of structures associated with the
production of tremor. This is especially true for Parkinsonian tremor which is associated
with an extensive cerebral network including primary motor and lateral premotor cortex,
supplementary motor cortex, thalamus/basal ganglia, posterior parietal cortex and secondary
somatosensory cortex. These structures are entrained at the tremor or twice the tremor
frequency (Schnitzler et al 2006, Pollok et al 2003). This network appears to represent the
neurophysiological substrate of physiological tremor. In this network, the activity of large
populations of neurons produces fluctuating local field potentials (LFP) which in turn can
entertain various degrees of synchronization between interacting neural structures. LFP are
vector sums of the intercellular currents of a population of cells. To our knowledge, it has
never been shown that extremely low frequency and low intensity magnetic fields (ELF-MF)
had a measurable effect on physiological tremor. But at this population scale, it is entirely
plausible that ELF-MF may alter or interfere with the neuromagnetic signals associated with
the physiological tremor. It is well known that there exists a wide range of sensitivity among
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neurons to imposed fields. Some neurons can change the frequency of their spontaneous firing
by very small changes in their membrane potentials due to external fields of less than a few
millivolts per centimetre (Terzuolo and Bullock 1956, Bullock 1986).

The purpose of the present paper was to study whether the characteristics of postural
physiological tremor are sensitive to the influence of low intensity (1.0 mT) and low
frequency (50 Hz) magnetic fields. Considering the nonstationarity of the analysed processes,
our investigations were performed by means of modern wavelet analyses with different
basis functions (real and complex) and a variety of refinements (Hölder coefficients, local
intermittency measure and number of spectral peaks). We found evidence to show that
application of a low-intensity MF leads to the following effects:

• an increase in the local regularity of the tremor data and, as a consequence, changes of its
correlation properties;

• a reduction of the standard deviation of the local intermittency measure, i.e. a more
homogeneous distribution of the energy;

• an increase in the number of the local spectral peaks in the range 2–5 Hz.

The obtained results are in agreement with the previous finding (Legros et al 2006) that the
effects of ELF-MFs could be comparable to those of relaxation. All of these effects are fairly
weak. Nevertheless, the results are consistent among the various tests and they suggest that
ELF-MFs actually can have an influence on human neurophysiological processes or, at least,
on physiological tremor, which we have used as a highly sensitive indicator of neuromotor
pathway responsiveness.
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