Bimodal Dynamics in Nephron Autoregulation
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Abstract

The individual functional unit of the kidney (the
nephron) displays oscillations in its pressure and flow
regulation at two different time scales: fast oscilla-
tions associated with a myogenic dynamics of the af-
ferent arteriole, and slower oscillations arising from
a delay in the tubuloglomerular feedback. We in-
vestigate the intra- and inter-nephron entrainment
of the two time-scales. Besides full synchronization,
both wavelet analyses of experimental data and nu-
merical simulations reveal a partial entrainment in
which neighboring nephrons attain a state of chaotic
synchronization with respect to their slow dynamics,
but the fast dynamics remain desynchronized.

1 Introduction

The concept of homeostasis [1], i.e. the ability of the
body to maintain a nearly constant internal milieu
despite of changes in the external conditions, plays
an essential role in the description of physiological
control systems.

It is sometimes assumed that homeostasis implies
that the physiological variables are kept near a stable
steady state by means of an effective feedback regu-
lation. While this may be the case in certain situa-
tions, biological systems in general should be consid-
ered as open dissipative systems that are maintained
under far-from-equilibrium conditions. Regular and
irregular oscillations associated with various forms
of instability are common features of behavior that
can be observed during normal functioning or arise
in connection with particular states of disease [2].

The kidneys play an important role in regulating
the blood pressure and maintaining a proper envi-
ronment for the cells of the body. At the same
time, to protect its function against variations in
the arterial blood pressure, the individual functional
unit of the kidney (the nephron) disposes of the so-
called tubuloglomerular feedback (TGF) mechanism
that regulates the incoming blood flow in dependence
of the NaCl concentration of the fluid that leaves
the nephron. Experiments by Leyssac and Holstein-
Rathlou [3] have demonstrated that this feedback
regulation can become unstable and generate self-
sustained oscillations in the proximal intratubular
pressure with a typical period of 30-40 s. With dif-
ferent amplitudes and phases the same oscillations
are manifest in the distal intratubular pressure and
in the chloride concentration near the terminal part
of the loop of Henle [4]. While for normal rats the
oscillations have the appearance of a limit cycle with
a sharply peaked power spectrum (Fig. 1a), highly
irregular oscillations, displaying a broadband spec-
tral distribution with significant subharmonic com-
ponents, are observed for spontaneously hypertensive
rats (Fig. 1b). Observation of both in-phase and an-
tiphase synchronization was reported for the regu-
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Figure 1: Wavelet analysis of the two time-series pre-
sented in Fig. 1.



lar pressure oscillations in normal rats while spon-
taneously hypertensive rats revealed signs of chaotic
phase synchronization [5, 6].

While entrainment of single-mode deterministic or
stochastic oscillations is well understood, the dynam-
ics of systems with several oscillatory modes is less
studied. In the present paper we describe the in-
dividual nephron as a two-mode oscillator demon-
strating relatively fast oscillations associated with
the myogenic regulation of the arteriolar diameter
and slower oscillations related with the delay in the
tubuloglomerular feedback. We study numerically
as well as experimentally the entrainment between
these time-scales both within the individual nephron
and between neighboring nephrons.

2 Nephron Autoregulation

2.1 Data analysis

Signals generated by living systems are typically
nonstationary and inhomogeneous, and processing
of such signals by means of conventional techniques
such as Fourier analysis can lead to problems with
respect to the interpretation of the obtained results.
Among the various approaches developed to study
nonstationary data, wavelet analysis is probably the
most popular [7]. In particular, this method gives us
the possibility to investigate the temporal evolution
of signals with different rhythmic components.

Figure 2 shows the different components detected in
the time series of Fig. 1. Inspection of the figure
reveals that the slow oscillations, whether they are
periodic or chaotic, maintain a nearly constant fre-
quency through the observation time. The fast os-
cillations, on the other hand, fluctuate around some
average value. This may be related to a complex
modulation of the fast oscillations by the slow dy-
namics or to the influence of noise (since the fast
oscillations are small in amplitude, they are more
sensitive to fluctuations).

However, this picture does not give information
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Figure 2: Wavelet analysis of the two time-series pre-
sented in Fig. 1.
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Figure 3: Power spectrum obtained from the wavelet
analysis for the two time-series presented in
Fig. 1.

about the dominant spectral components. This in-
formation can be obtained, for example, from a scalo-
gram, i.e., a time averaged power spectrum, being
an analogue to the Fourier power spectrum. Such
a scalogram is illustrated in Fig. 3 where a well-
pronounced peak around 0.03H z, corresponding to
the slow TGF-mediated mode, is distinguishable.
The other peak at 0.15—0.2H z derives from the fast
myogenic dynamics. It is interesting to note how
clearly these oscillations can be detected from the
tubular pressure variations. Since both the above
frequency components are of physiological interest
we extract them from the original wavelet transfor-
mation for further analysis of their coherence prop-
erties. For the periodic oscillations observed for nor-
motensive rats, the fast and slow components adjust
their periods in accordance to one another to main-
tain a 1 : 4 entrainment during the observation time.
For the chaotic oscillations observed for hypertensive
rats, the ratio changes more randomly in time.

2.2 Model

The functional unit of the kidney may be considered
as a filtration device with an internal feedback con-
trol that regulates the blood flow. Autoregulation
of the pressures and flows in the individual nephron
may be described by the following model [8]:
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The first equation represents the pressure variations
in the proximal tubule in terms of the in- and out-
going fluid flows. Here, Fy is the single-nephron



glomerular filtration rate and Ct,y is the elastic com-
pliance of the tubule. The flow into the loop of Henle
is determined by the difference (P; — P;) between the
proximal and the distal tubular pressures and by the
flow resistance Ryep. The reabsorption in the prox-
imal tubule F}..,p is assumed to be constant.

The following two equations describe the dynamics
associated with the flow control in the afferent ar-
teriole. Here, r represents the radius of the active
part of the vessel and v, is its rate of increase. d is a
characteristic time constant describing the damping
of the oscillations, w is a measure of the mass rela-
tive to the elastic compliance of the arteriolar wall,
and P,, denotes the average pressure in the active
part of the arteriole. P, is the value of this pres-
sure for which the arteriole is in equilibrium with
its present radius and muscular activation W. The
expressions for Fy, P, and P, involve a number of
algebraic equations that must be solved along with
the integration of Eq. (3).

The remaining equations in the single-nephron model
describe the delay T in the TGF regulation. This de-
lay arises both from the transit time through the loop
of Henle and from the cascaded enzymatic processes
between the macula densa cells and the smooth mus-
cle cells that control the contractions of the affer-
ent arteriole. The feedback delay, which typically
assumes a value of 12-18 sec, will be considered a
bifurcation parameter in our analysis. Another im-
portant parameter is the strength « of the feedback
regulation. This parameter takes a value of about 12
for normotensive rats, increasing to about 18 for hy-
pertensive rats [9]. For a more detailed explanation
of the model and the parameters, see Ref. [10].

Both experimental investigations and our simula-
tions [8] reveal one of the most important features
of the single-nephron model, namely the presence
of two different time scales in the pressure and flow
variations. Considering the model equations (3) we
can identify the two time scales in terms of (i) a
low-frequency (TGF-mediated) oscillation with a pe-
riod Ty, = 2.2T arising from the delay in the tubu-
loglomerular feedback, and (ii) somewhat faster os-
cillations with a period T, &~ T} /5 associated with
the inherent myogenic adjustment.

To determine T}, and T, in our numerical simulations
we have used the mean return times of the trajectory
to appropriately chosen Poincaré sections

Tv =< Tret

wp=0 >, andT), =< Tretl.x2:0 > . (2)

From these return times it is easy to calculate the
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Figure 4: Two-mode oscillatory behavior in the single
nephron model. Black colored regions corre-
spond to a chaotic solution.

intra-nephron rotation number (i.e., the rotation
number associated with the two-mode behavior of
the individual nephron)

Toh — Tv/Th. (3)

This measure will be used to characterize the various
forms of frequency locking between the two modes.
With varying feedback delay T and varying slope «
of the open loop feedback curve, Fig. 4 shows how the
two oscillatory modes can adjust their dynamics and
attain states with different rational relations (n : m)
between the periods. The regions of high resonances
(1 :4,1:5 and 1 : 6) are seen to exist in the
physiologically interesting range of the delay time
T € [12 sec, 20 sec].

While the transitions between the different locking
regimes always involve bifurcations, bifurcations may
also occur within the individual regime. A period-
doubling transition, for instance, does not necessar-
ily change r,5, and the intra-nephron rotation num-
ber may remain constant through a complete period-
doubling cascade and into the chaotic regime. This
is illustrated in Fig. 5 where we have plotted r,; as
a function of the feedback gain « for different time
delays T» = 13.5 sec (black circles) and T' = 15.0 sec
(open circles). Phase projections (P, r) from the var-
ious regimes are shown as inserts. Inspection of the
figure clearly shows that r,; remains constant under
the transition from regular 1 : 4 oscillations (black
circles for a = 25.0) to chaos (for @ = 28.0), see in-
serts 1 and 2. With further evolution of the chaotic
attractor (insert 3), the 1 : 4 mode locking is de-
stroyed. In the interval around o = 31.5 we observe
2 : 9 mode locking. A similar transition is observed
for T = 15 sec (open circles). Periodic 1 : 5 os-
cillations (a = 27.0) evolve into a chaotic attractor
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Figure 5: Internal rotation number as a function of
the parameter « calculated from the single-
nephron model. Inserts represent phase pro-
jections of typical regimes.

(o = 28.5), but the rotation number maintains a
constant value. For fully developed chaos, the 1 : 5
locking again breaks down.

We conclude that besides being regular or chaotic,
the self-sustained pressure variations in the individ-
ual nephron can be classified as being synchronous or
asynchronous with respect to the ratio between the
two time scales that characterize the fast (arteriolar)
mode and the slow (TGF mediated) mode, respec-
tively. As we shall see, this complexity in behavior
may play an essential role in the synchronization be-
tween a pair of interacting nephrons.

3 Entrainment of oscillatory modes for
interacting nephrons

3.1 Experimental results

Using anatomical criteria, neighboring nephrons hav-
ing a high likelihood of deriving their afferent arte-
rioles from the same interlobular artery were identi-
fied [11]. In these nephrons 29 out of 33 pairs (i.e.,
80 %) were found to have synchronized oscillations.
In contrast, nephron pairs not fulfilling these crite-
ria only showed synchronous oscillations in one case
out of 23 investigated pairs (i.e., 4 %). This observa-
tion shows that synchronized oscillations are prefer-
entially found in nephrons originating from the same
interlobular artery. Figure 6 displays the tubular
pressure variations in pairs of neighboring nephrons
for a normotensive rat (a) and for hypertensive rats
(b-d). Oscillations presented in Figs. 6 (b,c and d)
are significantly more irregular than the oscillations
displayed in (a). Ome can visually observe a cer-
tain degree of synchronization between the interact-
ing nephrons. It is difficult, though, to separately
estimate the degree of adjustment for the myogenic

oscillations and for the TGF mediated oscillations
without special tools.

To study multimode interactive dynamics in coupled
systems we propose to use the wavelet based coher-
ence measure I'a (in analogy with the classical co-
herence function). Let Ey[zz](f,t) and Eylyy](f,t)
be the energy densities of signals x(¢) and y(t). Let
also in some range of frequencies A each of the pro-
cesses z(t) and y(t) have a clearly expressed rhythm
(e.g., the range of slow or fast oscillations for the two
nephrons). In this case synchronization means that
the corresponding frequencies for z(t) and y(t) will
be locked (coincide). Such a situation corresponds
to the value I'y = 1 for the function:

[ (1) masea [Byfog)(f, 1))

maxyen [Eylrx](f,t)] - maxpea [Ey[yy](f,t)]

Here, Ey[zy](f,t) is the mutual energy density
Byley)(£.) =1 Tyley)(£.1) - Tilyal(f,t) |. Talt)
is a function of time that allows us to follow the
evolution of the interactive dynamics of the two pro-
cesses in the chosen frequency range A. The more
synchronous the rhythms of these processes are, the
closer T'a(t) will be to 1.

Figures 8 and 9 demonstrate different degrees of co-
herence for the considered modes. For periodic os-
cillations (a), both the slow and fast modes of the
interacting nephrons are perfectly locked during the
observation time. For a system with complex os-
cillations subjected to noise one can speak about a
certain degree of synchronization if the periods of
locking is significant compared with the characteris-
tic periods of oscillations. Fully incoherent behavior
with respect to both oscillatory modes can be ob-
served in (b). In many cases we can diagnose syn-

180
(@ 10 (b)

100 1

P(mmHg)
P(mmHg)
©
o

2.0 - 4.0 I
0 400 800 0 600 1200

t(sec)

100 N © 10 @
W W }" I “’m‘ '

12.0 "H/V

. 100 .
600 1200 0 600 1200

t(sec) t(sec)

t(sec)

P(mmHg)
P(mmHg)
=
o

8.0

o

Figure 6: Examples of the tubular pressure variation
that one can observe in adjacent nephrons
(a) for normotensive and (b-d) for hyperten-
sive rats.
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Figure 7: Mutual wavelet analysis for the slow os-
cillations of the two time-series presented
in Fig. 6: (a) synchronous behavior, (b)
nonsynchronous dynamics, (c) and (d) syn-
chronous behavior but during limited time

intervals.
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Figure 8: Mutual wavelet analysis for the fast oscilla-
tions extracted from time-series presented in
Fig. 6. (a) and (c) illustrate synchronous be-
havior, (b) and (d) nonsynchronus dynamics.

chronization of the slow motions (c,d) for relatively
long time intervals where the frequencies remain al-
most equal. The fast motions, on the other hand, can
demonstrate different coherence properties between
nephrons. The oscillations can be locked during long
periods of time together with the slow oscillations
(c). We define this type of synchronization as full
synchronization since all time scales of the system
are locked. Another case (d) is when the fast os-
cillations are incoherent while the slow oscillations
are synchronized during the considered time interval.
We refer to this phenomenon as partial synchroniza-
tion.

3.2 Simulation results

Neighboring nephrons can influence each other’s
blood supply either through vascularly propagated
electrical (or electrochemical) signals or through a
hemodynamic coupling arising via a direct redis-
tribution of the blood flow between the coupled
nephrons. In the present work we shall focus our
attention on the vascularly propagated coupling, as-
suming the hemodynamic coupling to be negligible.
In the single-nephron model the equilibrium pressure
in the afferent arteriole depends on the current ra-
dius 7 and on the activation level ¥ of the smooth
muscles surrounding the arteriole and controlling its
diameter. The muscular activation arises at the jux-
taglomerular apparatus and travels upstream along
the afferent arteriole in a damped fashion. When it
reaches the branching point with the arteriole from
the neighboring nephron, part of the signal may
propagate down that arteriole and start to contribute
to its TGF response. The coupling is considered
nearly instantaneous since the time it takes for the
vascular signal to reach the other nephron is very
small relative to the period of the TGF-oscillations.
It has been observed [11] that the signal decreases
nearly exponentially as it propagates. In the model,
the vascularly propagated coupling is represented by
adding a contribution of the activation level in one
nephron to the activation level in the neighboring
nephron:

Ui ="Vi2+7¥2; (4)

with y being the coupling parameter and ¥; 5 the un-
coupled activation levels of the two nephrons as de-
termined by their respective Henle flows. By virtue
of the two-mode dynamics of the individual nephron,
a number of new and interesting results appear.

The individual oscillatory system has two modes that
can be locked with each other. However, an interac-
tion between functional units can break their mutual
adjustment. It is also plausible that a coupling can
act in different manners on the fast and slow oscilla-
tions. For the interacting systems we introduce two
rotation numbers as follows:

ro = Ty1/To2,  Th = Th1/Tha. (5)
To provide more information, the variation of the
phase difference is calculated separately for the slow
h and for the fast v oscillations.

Let us consider the case of a = 30.0 corresponding to
a weakly developed chaotic attractor in the individ-
ual nephron. The coupling strength v and delay time
T5 in the second nephron are varied. Two different
chaotic states can be recognized as asynchronous and



11

= 1.0?\‘\

\

e
P
%

0.9
12.0 135

T,(sec)

15.0

Figure 9: Full and partial synchronization of fast and
slow motions (71 = 13.5 sec, a = 30.0 and
~ = 0.06).

synchronous (Fig. 9). For asynchronous behavior the
rotation numbers r;, and r, change continuously with
T, while inside the synchronization region two cases
can be distinguished. To the left, the rotation num-
bers r;, and 7, are both equal to unity since both slow
and fast oscillations are synchronized. To the right
(Tz > 14.2 sec), while the slow h-mode of the chaotic
oscillations remain locked, the fast v-mode drifts ran-
domly. In this case the synchronization condition is
fulfilled only for one of oscillatory modes.

4 Conclusions

Based on the analysis of experimental results we
showed that the vascular dynamics and the tubu-
loglomerular feedback mechanism are responsible for
two time scales associated with a fast and a slow os-
cillatory mode in the individual nephron. Both for
periodic oscillations observed in normotensive rats
and for the chaotic oscillations in hypertensive rats
the two modes exhibit resonant behavior as well as
nonsynchronous dynamics.

To investigate different types of internephron mode
entrainment we developed a mutual wavelet trans-
formation that allows us to easily analyze adjust-
ments between different time scales from nonstation-
ary data. We observed simultaneous (full) locking for
the slow and fast oscillations both for normotensive
and for hypertensive rats. We also identified a state
of partial synchronization where the slow oscillations
are synchronized while the fast motion demonstrates
noncoherent behavior. Such a situation is typical for
hypertensive rats.

Numerical simulations for coupled nephron models
demonstrate similar behavior. With varying time
delay in the tubuloglomerular feedback and varying
strength of the vascular coupling the experimentally

observed forms of synchronous behavior were recov-
ered.
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