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Abstract

We study how different measures estimated from return time sequences are sensitive to choice of the Poincar�ee section
in the case of chaotic dynamics. We show that scaling characteristics of point processes are highly dependent on the

secant plane. We focus on dynamical properties of a chaotic regime being more stable to displacements of the section

than metrical characteristics.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

One of the commonly used methods allowing to study the structure and properties of a chaotic attractor being the

solution of some dynamical system consists in the introduction of the Poincar�ee section. The given approach decreases

the dimension of the phase space often making easier further numerical investigations. In general, there exist two

possibilities. On the one hand, it is possible to analyze a set of points being the coordinates of successive intersections of

the secant plane by a phase space trajectory. On the other hand, a series of time intervals between these intersections can

be considered (return times), i.e., all available information about the features of a chaotic regime will be carried by a

sequence of event timings only. The last type of processes (so-called point processes [1]) is rather popular in many areas

of science (e.g., in neurophysiology) and represents an object of a high interest [2].

Within the frameworks of dynamical systems theory the Poincar�ee section is introduced in such a way that it will be

crossed by all phase space trajectories belonging to a chaotic attractor (the case of correct introduction of the section).

This situation becomes complicated if an arbitrary choice of the secant plane is out of our abilities: A series of return

times may represent, e.g., a process at the output of a threshold device with an external complex driving [3]. For large

threshold level or for small amplitude of a forcing signal some loops of the phase space trajectory will be missed (we can

speak therefore about the incorrect introduction of the Poincar�ee section). When dealing with return times it may be

impossible to determine which of two possibilities takes place and a question arises: What can be said about the features

of a chaotic forcing on the basis of point processes analysis in both these cases?

Partly, this question was studied in recent publications [3–6]. Castro and Sauer [3] discussed the dependence of

correlation dimension computed from interspike intervals produced by simple neuron models versus the threshold

levels. According to their work, dimension calculations from point processes are highly dependent on the details of

firing thresholds. Following Hegger and Kantz [4], Sauer�s embedding theorem [6] originally proved for integrate-and-

fire processes is valid for return times as well. In [7] it was shown that dynamical properties of a chaotic regime (the

largest Lyapunov exponent) can be extracted from intersection intervals even if many of the smaller oscillations fail to
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cross the secant plane. At the same time, displacements of this plane could lead to spurious values of the second ex-

ponent [8].

In the present work we perform a comparative study of different measures estimated from return times in order to

testify their sensitivity to introduction of the section. We show that an increase of the mean intersection interval can

lead to appearance of relatively long-range correlations in data being analyzed. We report the results of dynamic en-

tropies estimation and discuss the dependence of the given characteristics on the details of symbolic representation of

return time sequences.

2. Correlation dimension and Lyapunov exponents

Let us consider the R€oossler system [9]

dx
dt

¼ �ðy þ zÞ;

dy
dt

¼ xþ 0:15y;

dz
dt

¼ 0:2þ zðx� 10Þ

ð1Þ

as the source of chaotic oscillations and introduce the Poincar�ee section in the following way: x ¼ H, where a constant H
can take any values in the range j H j 6 17:2. The question whether the metrical properties of a chaotic regime can be

determined from return times was studied by Castro and Sauer [3]. Using the Takens estimator [10] being a variant of

Grassberger and Procaccia algorithm [11] for correlation dimension (D2) calculation they found that a move of the

secant plane creates difficulties: the value of D2 becomes rather sensitive to numerical parameters such as the embedding

dimension, for example. Thus, correlation dimension calculations in practice depend on the choice of H although it is

supposed [3] that in theory D2 can be obtained from return times even for incorrect introduction of the secant plane.

Additionally to the results of Castro and Sauer [3] note, that displacements of the Poincar�ee section change signif-

icantly the structure of time intervals leading to decrease (or even to disappearance) of the linear segment in double

logarithmic plot of the correlation integral versus spatial separation. As a consequence, it may be unclear how to

determine the dimension within the frameworks of standard procedure for its calculation [11]. In particular, Fig. 1a

shows the values of D2 estimated from local slopes of the above mentioned ln–ln plot in five-dimensional phase space

for three arbitrary chosen sections: H ¼ 1, 3 and 9. (We have analyzed sequences consisting of 25,000 return times.) In

the case of H ¼ 9, even approximate value of correlation dimension is under question in connection with a high sen-

sitivity to choice of the scaling region at the determination of D2. The results in Fig. 1a are obtained using the delay

method for discrete sequences of time intervals. An approach suggested in [12] will increase the value of D2 by one.

However, the problems being discussed remain the same.

Displacements of the secant plane create probably less problems if we need to extract dynamical characteristics [13]

though it is necessary to note, that results of numerical calculations strongly depend on the details of used algorithms

[7]. A possible way of how to estimate the largest Lyapunov exponent (k1) from return times is considered in [12]. It is

based on an approximation of the averaged instantaneous frequency. According to the work [7], the value of k1 can be

calculated in the case of incorrect introduction of the Poincar�ee section if the mean return time does not exceed some

temporal scale which corresponds approximately to the prediction time for chaotic oscillations [14] (Fig. 1b). Certainly,

when discussing the results of numerical experiments we should mention that the measure being estimated will depend

on a variation of algorithmic parameters. In our case, the insensitivity of Lyapunov exponent to displacements of the

Poincar�ee section means that the value of k1 computed from time intervals will coincide with the value obtained from

original chaotic oscillations xðtÞ with an accuracy of about 10–15% (dependence 1 in Fig. 1c).

Fig. 1c demonstrates also the results of the second Lyapunov exponent (k2) estimation being more sensitive to the

value of H. True exponent is obtained for secant planes chosen near the equilibrium points of the R€oossler attractor (H is

close to zero). Here, even the case of correct introduction of the section (j H j 6 5:3) can lead to problems in the de-

termination of k2.

3. Scaling features of return times

Let us discuss how a choice of the Poincar�ee section influences scaling properties of return times. We shall consider

for this purpose two approaches, namely, wavelet transform modulus maxima method (WTMM) [15,16] and detrended

fluctuation analysis (DFA) [17,18].
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The first approach described in details in [15] supposes the characterization of a time series by means of the function

DðhÞ called singularity spectrum, where D is the fractal dimension of the subset of data characterized by the H€oolder
exponent h. In this method, a study of the local singular behaviour of time series is based on calculations of the wavelet

transform coefficients. The WTMM-algorithm assumes the building of a partition function Zðq; aÞ being the sum of the

qth powers of the local maxima of modulus of the given coefficients at some scale a and an analysis of the power-law

behaviour: Zðq; aÞ � asðqÞ. Variations of powers q allow to obtain a number of H€oolder exponents h ¼ dsðqÞ=dq and

estimate the Hausdorff dimensions D of the corresponding subsets of data using the Legendre transform [15]. The values

of h characterize a power-law scaling behaviour of the wavelet transform coefficients along maxima lines [19].

As applied the WTMM-method to return times we can see (Fig. 2a) that a move of the secant plane results in

changes of H€oolder exponents. (The shape of singularity spectrum and the values of D are less sensitive to the choice of

the section.) An increase of H bring H€oolder exponents closer to the level h ¼ 0:5 which corresponds to uncorrelated

behaviour of time intervals. Strong anti-correlations taking place for H ¼ 1 (the mean value of h is approximately equal

to 0.05) become weaker for larger H. Fig. 2b shows that even a small enough displacement of the section leads to

significant changes of the scaling features of point processes. For comparison, the results obtained for two values of H
are given in this figure (H ¼ 1 and H ¼ 3, both corresponding to the case of correct introduction of the secant plane).

The more is H the more oscillations are missed, therefore, the mean intersection interval increases (Fig. 1b).

However, the dependence of H€oolder exponents on H is not a simple growth. In some ranges of the given parameter an

increase of the mean return time destroys long-range correlations in time series. Within the limits of other regions of H
the opposite effect can be obtained (Fig. 2c). For example, numerical values of h estimated for H ¼ 11 indicate that the

fluctuations in return times exhibit correlated behaviour. Other two dependencies in Fig. 2c (H ¼ 9 and 15) correspond

to uncorrelated behaviour. These results show that the H€oolder exponents (and therefore the effect of long-range cor-

relations in point processes) strongly depend on the choice of the section.

Similar conclusions follow from detrended fluctuation analysis [17,18]. In DFA technique, a single quantity a is

usually estimated being a scaling exponent of the power-law dependence: F ðnÞ � na, where F is the root-mean-square

fluctuation of an integrated and detrended time series and n is the window size used for linear fit of the local trend. In

practice, a can be found as the slope of the line relating ln F to ln n [17]. Slopes may not coincide for different scaling

regions. That is why an analysis of local exponents may be performed to characterize the details of the complex
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Fig. 1. (a) Correlation dimension estimated using Grassberger and Procaccia algorithm [11] for different scaling regions and for three

arbitrary chosen Poincar�ee sections. The values of D2 are calculated as local slopes of ln–ln plot of the correlation integral versus spatial

separation. (b) Mean return time versus parameter H. Dashed line corresponds to the prediction time for chaotic regime. (c) Lyapunov

exponents calculated from point processes. Dashed line marks the value k1 estimated from original oscillations xðtÞ.
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structure of time series. Like H€oolder exponents of WTMM-method, the numerical values of a indicate the presence of

correlations of different types if a 6¼ 0:5 and uncorrelated behaviour for a ¼ 0:5.
Again, we can see that displacements of the Poincar�ee section change significantly scaling properties of return times

(Fig. 3a). Here, local scaling exponents are highly sensitive to the window size. In the case of H ¼ 3, strong enough

correlations existing in wide range of scales become weaker for large n (a approaches 0.5). Fig. 3b testify that within the

limits of some regions of H an increase of the mean intersection interval can lead to the appearance of correlations in

point processes (the case of H ¼ 11 in comparison with H ¼ 9 and 15). Thus, using two different approaches we get sure

that scaling features of return times are highly dependent on the choice of the Poincar�ee section as in the case of its

correct introduction (j H j 6 5:3) as when some loops of the phase space trajectory fail to cross the secant plane.

4. Entropy analysis

In this Section we focus on the entropy analysis of point processes. Unlike other approaches (e.g., correlation di-

mension or Lyapunov exponents calculation) the given analysis requires an initial transformation of a time series into a
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Fig. 2. (a) Singularity spectra of WTMM-method for H ¼ 1 and 15. (b) and (c) H€oolder exponents versus parameter q corresponding to
different secant planes.

1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

Θ=1

Θ=3

Θ=15
α

lg(n)
1.0 1.5 2.0 2.5

0.2

0.3

0.4

0.5

0.6

0.7

(b)

Θ=11

Θ=9

Θ=15

α

lg(n)
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symbolic sequence [20]. If such a transformation is realized we may introduce the entropy per block of length n (the n-
gram entropy):

Hn ¼ �
X

pðnÞðA1; . . . ;AnÞ log pðnÞðA1; . . . ;AnÞ ð2Þ

and conditional entropies (or n-gram dynamic entropies): hn ¼ Hnþ1 � Hn, where A1; . . . ;An are the letters of some block

and pðnÞðA1; . . . ;AnÞ is the probability to find this block at an arbitrary but fixed position in symbolic string [20]. The

limit h ¼ limn!1 hn is called entropy of the source. In this paper, logarithms are taken in k-units, where k is the length of

an alphabet, i.e., the number of different possible letters. Numerical values of hn depend on the details of the above

mentioned transformation.

In our study return times are considered as a discrete sequence of real numbers. The partitioning of a time series is

provided in such a way that the probabilities of all k symbols approximately coincide. Fig. 4a shows the results of h5
estimation in dependence on the parameter H for k ¼ 3, 4 and 5. (Sequences being analyzed consist now of 100,000

symbols.) The conditional entropy normalized by the mean intersection interval decreases however this decrease is slow

enough for wide range of H including partly a region of incorrect introduction of the Poincar�ee section. Similar results

can be obtained also for other block lengths. In analogy with the largest Lyapunov exponent dynamic entropies are less

sensitive to displacements of the secant plane than fractal dimensions or scaling characteristics of point processes. This

property of dynamic entropies may be important in practice if we aim to provide some classification of a chaotic

forcing.

A binary representation of real value data (the case of k ¼ 2) leads to more complex dependence of conditional

entropies h5 versus H (Fig. 4b). The same effect can be obtained when using other techniques. In particular, we can

consider an approach of Lempel–Ziv complexity [21] that also allows to estimate the entropy of the source h (Fig. 4c).

Characteristics calculated by means of these two approaches (Fig. 4b and c) are rather sensitive to displacements of the

secant plane.

Taking other lengths of an alphabet for the estimation of conditional entropies (k > 2) we have obtained the values

of h5 being relatively less than the corresponding results for k ¼ 2 (Fig. 4a). The more is k the less are measures under

study, i.e., the details of symbolic representation of time series influence our calculations (probably, in connection with

finite sample effects). We get sure that the dependence h5ðHÞ becomes less sensitive on H as k increases. The values h5 are
rather close to the largest Lyapunov exponent (k1).
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Fig. 4. (a) and (b) The dependencies of conditional entropy h5 on H for different lengths of an alphabet k. Here, the values h5 were

normalized by the mean intersection interval I (i.e., we consider h5=I). (c) Entropy of the source estimated by means of Lempel–Ziv

approach for binary representation of return time sequences (k ¼ 2).
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For small H, conditional entropies fluctuate concerning some mean values. These fluctuations may be reduced when

considering longer sequences of return times. When processing finite amount of data an accuracy of numerical cal-

culations becomes of a high importance. In the case of k ¼ 5 fluctuations of h5 do not exceed 15% if in analogy with

Lyapunov exponents we shall limit ourself by some region of H, e.g. j H j< 10. Therefore, we can speak about the

insensitivity of measures being estimated to displacements of the Poincar�ee section within the range of the given accuracy

(if missings of the small oscillations occur not too often).

5. Conclusions

In our work we discussed the sensitivity of different measures computed from return times to choice of the Poincar�ee
section in the case of chaotic dynamics. The main results of this study consist in the following.

Displacements of the section change significantly scaling properties of return times and relatively long-range cor-

relations in point processes. An increase of H means that more and more oscillations will be missed. However, in the

case of incorrect introduction of the section correlations exist within some regions of H and disappear within other

regions.

We can conclude that dynamical properties of a chaotic regime (and, therefore, measures characterizing these

properties) are more stable to displacements of the secant plane than metrical characteristics. That is why when

speaking about a threshold device with an external chaotic driving the estimation of Lyapunov exponents or entropy

analysis give us the possibility to characterize the features of a forcing regime from point processes independently

(under quite general conditions) on the amplitude of chaotic oscillations or details of threshold levels.
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