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Abstract

Two different methods (the WTMM- and DFA-approaches) are applied to investigate the scaling properties in the

return-time sequences generated by a system of two coupled chaotic oscillators. Transitions from twomode asyn-

chronous dynamics (torus or torus–chaos) to different states of chaotic phase synchronization are found to significantly

reduce the degree of multiscality. The influence of external noise on the possibility of distinguishing the various chaotic

states is considered.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Synchronization is a fundamental nonlinear phenomenon, and the appearance of various forms of entrainment in

systems of coupled oscillators is the subject of intensive research in many areas of science [1–3]. The interactive dy-

namics of chaotic oscillators is particularly challenging, and a variety of approaches to the study of chaotic synchro-

nization have been developed. Chaotic synchronization may play a significant role in the interaction of biological

oscillators such as the insulin producing pancreatic cells or the nephrons of the kidney [3]. At the same time, a variety of

applications of this phenomenon for secure communication and for monitoring and control of dynamical systems have

been suggested. The notion of chaotic synchronization includes a wide range of phenomena, among which are complete

synchronization [4], lag synchronization [5], phase synchronization [6], and generalized synchronization [7]. The dis-

tinction among these phenomena reflects the varying degree to which the oscillators adjust their dynamics in accordance

with one another. Unlike the classical theory of the entrainment for periodic processes, chaotic synchronization deals

with the basic frequencies (if they are distinguished in the dynamics of the systems), with instantaneous phases of the

oscillations, or with characteristic temporal scales.

It is well-known that nonlinear dynamical systems can demonstrate a final state behavior that depends on the choice

of initial conditions. The phenomenon of multistability is clearly expressed in the synchronization of coupled oscillators

that individually follows the period-doubling route to chaos. This is an example of so-called phase multistability: The

synchronous solutions have different phase relationships between the oscillations [8]. In particular, if two periodic

oscillators with n subharmonics x0=2
n (n ¼ 1; 2; . . .) of the basic frequency x0 are mutually coupled then the phase

difference between the interacting subsystems inside the synchronization region can take 2n values. Similar effects can be

observed for chaotic regimes with multiband structure.
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Both the synchronous and the asynchronous regimes arising in the dynamics of coupled chaotic systems can be

characterized by means of methods originating from Fourier analysis. This provides a possibility to determine the

regions within which the effect of locking of the basic frequencies can be observed [9]. Another approach defines the

instantaneous phases of interacting units [6] and follows the development of their difference. Numerical measures that

can be used for diagnostic purposes include the spectrum of Lyapunov exponents, the diffusion coefficient of the phase

difference, the mean return time to a Poincar�ee section [10], etc. Chaotic dynamics of evolutionary processes is reflected

in the complex structure of their characteristic temporal scales, e.g., in the sequence of times when the phase space

trajectory returns to a secant plane. Such sequences are sometimes related to a class of so-called multifractal objects

[11]. They have different scaling properties for different subsets of the data and require a large number of characteristics

to quantify their peculiarities. Multifractal phenomena are rather the rule than the exception in many areas of science

[12]. They occur, for instance, in symbolic sequences [13] and medical data [14], in fully developed turbulence [15] and

Brownian motion [16], in cloud structure [17], and in semiconductor diodes [18].

In this paper we investigate the scaling features of various processes in the evolutionary dynamics of two interacting

chaotic oscillators. Taking coupled R€oossler systems as a rather simple model demonstrating the period-doubling route to

chaos we study how the transition to and between different types of synchronous motion is reflected in the structure of

return times to a Poincar�ee section and to what extend scaling properties of return times can be applied to analyze complex

phase dynamics. By means of two approaches, namely the wavelet transformmodulus maxima (WTMM)method [16,19]

and the detrended fluctuation analysis (DFA) [20], we investigate the scaling features of oscillations with different fre-

quencies and with varying phase shift. We show that the transition from twomode asynchronous oscillations to a fre-

quency-locked state can be studied in terms of the transition frommultiscality to an almost monoscale sequence of return

times. We discuss different types of correlations in the analyzed data and consider the influence of external noise.

2. Methods

2.1. WTMM-approach

The WTMM method originally proposed by Muzy et al. [19] is now one of the commonly used approaches to the

study of multiscale structures in complex time series. Unlike the techniques used to estimate the f ðaÞ singularity

spectrum [11,21], the WTMM-approach is based on the wavelet transform method, which is a useful tool in the

processing of nonstationary data. The attractiveness of using this technique is associated with the possibility it provides

of analyzing a wide range of scales and a broad spectrum of scaling characteristics (from small fluctuations associated

with weak singularities to large fluctuations and strong singularities). This is a clear advantage of the wavelet-based

technique in comparison with the previously suggested structure function method [22] that investigates multiscale

properties by calculating the moments of the probability density function. The WTMM-approach, described in details

in [16], performs the numerical quantification of a time series by means of the so-called singularity spectrum DðhÞ, where
D is the fractal dimension of the subset of the data characterized by the H€oolder exponent h.

The applied algorithm involves two stages. At the first stage, the wavelet transform of a function f ðxÞ is obtained:

Tw½f �ðx0; aÞ ¼
1

a

Z 1

�1
f ðxÞw x� x0

a

� �
dx: ð1Þ

In practice, one often uses a random walk displacement for f ðxÞ (the procedure of random walk building from

experimental data is described below), a is the scale parameter, and w is the analyzing wavelet chosen, e.g., as the

derivative of order m of a Gaussian function

w ¼ wðmÞ ¼ ð�1Þm om

oxm
exp

��
� x2

2

��
: ð2Þ

If f ðxÞ is a k-times continuously differentiable function at the point x0 then its wavelet coefficients satisfy to the

following inequality:

Tw½f �ðx0; aÞ6 akþ1; a ! 0þ: ð3Þ

The scaling behavior of Tw½f � for an irregular function at the point x ¼ x0 is described by the H€oolder exponent hðx0Þ:

Tw½f �ðx0; aÞ 
 ahðx0Þ; a ! 0þ: ð4Þ

All necessary information about a local singularity of f ðxÞ including its localization x0 and the strength of the singu-

larity hðx0Þ can be obtained from the asymptotic behavior of the wavelet coefficients at small values of a. If these
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coefficients are close to zero around the point x0 then f ðx0Þ is a regular function. The divergence of Tw½f �ðx; aÞ at small

scales marks the presence of a local singular behavior at x ¼ x0. The corresponding value of the H€oolder exponent can be

found as the slope of the dependence of ln Tw½f �ðx0; aÞ vs. ln a [23]. The estimated characteristic hðx0Þ does not depend on

the choice of the analyzing wavelet w. This is obviously an important aspect of the WTMM-approach. In our inves-

tigations the Mexican hat wavelet (m ¼ 2) was chosen for w.
At the second stage a partition function Zðq; aÞ is constructed representing the sum of qth powers of the local

maxima of jTw½f �ðx; aÞj at the scale a. For small values of a the following power-law behavior is expected [16]:

Zðq; aÞ 
 asðqÞ; ð5Þ

where sðqÞ are the scaling exponents of Zðq; aÞ. The dependence sðqÞ is a linear function with the single H€oolder exponent
hðqÞ ¼ ds=dq ¼ const: for monofractal objects and a nonlinear function with a large number of exponents hðqÞ in the

case of multifractals. The singularity spectrum DðhÞ can thereafter easily be estimated using the Legendre transform

DðhÞ ¼ qh� sðqÞ: ð6Þ

For positive values of q the partition function Zðq; aÞ characterizes the scaling of large fluctuations in the data series

(strong singularities); for negative q it reflects the scaling of small fluctuations (weak singularities). Application of the

WTMM-approach to time series allows us to characterize correlations of different types if h 6¼ 0:5 and DðhÞ 6¼ 0. In

particular, the range 0 < h < 0:5 implies the presence of anti-correlated behavior. This means that large (compared to

the average) values of the data series are more probably to be followed by small values and vice versa [20]. h > 0:5
reflects correlated dynamics where large values are more likely to be followed by large values, and h ¼ 0:5 corresponds

to uncorrelated behavior [14].

2.2. DFA-approach

A rather popular way to study the scaling features of time series consists in the use of the modified root mean square

analysis of a random walk, termed DFA [20]. This approach allows us to quantify the scaling properties in processes of

various origin. Numerical analysis of a time series zðiÞ, i ¼ 1; . . . ;N within the framework of the DFA-technique is

performed as follows. First, the mean value z is removed from zðiÞ and the resulting time series is integrated to obtain

the random walk yðkÞ ¼
Pk

i¼1½zðiÞ � z�. Next, yðkÞ is divided into time windows of length n, from each of which the local

linear trend ynðkÞ is subtracted [20]. It is expected that the root mean square fluctuations F ðnÞ,

F ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

½yðkÞ � ynðkÞ�2
vuut ð7Þ

show the power-law dependence F ðnÞ 
 na. In practice, a can be found as the slope of the line relating lg F to lg n. These
slopes may not coincide for different scaling regions. That is why an analysis of local exponents may be used to char-

acterize the detailed structure of complex time series. Like the H€oolder exponents of the WTMM-method, the numerical

values of a indicate the presence of uncorrelated behavior if a ¼ 0:5. (In this case the local slopes may be different from

0:5 for small n at the presence of only short-term correlations however a approaches 0.5 for large n.) The range

0:5 < a < 1 corresponds to power-law correlations while the range 0 < a < 0:5 reflects the presence of anti-correlations

in data series (and the smaller a is the more probable is the alternation between large and small values). The special case

a ¼ 1 is related to 1=f -noise. For a > 1 correlations also exist, however they are not of a power-law form [20].

3. Model

Let us consider a system of two coupled R€oossler oscillators as described in [6]:

dx1;2
dt

¼ �x1;2y1;2 � z1;2 þ cðx2;1 � x1;2Þ;

dy1;2
dt

¼ x1;2x1;2 þ ay1;2;

dz1;2
dt

¼ b þ z1;2ðx1;2 � lÞ:

ð8Þ

This system can serve as a simple model, allowing us to study the transitions to and between various types of

synchronous and asynchronous dynamics. Here, the parameters a, b, and l govern the dynamics of each subsystem, and
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c is the coupling parameter. x1 ¼ x0 þ d and x2 ¼ x0 � d are the basic frequencies of the two subsystems and d is the

mismatch between them. The parameters are chosen as follows: a ¼ 0:15, b ¼ 0:2, c ¼ 0:02, and x0 ¼ 1:0. A bifurcation

analysis of Eq. (8) was performed by Postnov et al. [8]. Let us briefly recall those aspects of their bifurcation diagram on

the ðd; lÞ parameter plane (Fig. 1) that are necessary for the further discussion.

The interactive dynamics of two R€oossler oscillators leads to the appearance of a variety of periodic and chaotic

solutions related to different attractor families with distinct phase shift. We consider here only two families having the

largest basins of attraction, namely, ‘‘in-phase’’ and ‘‘out-of-phase’’ attractors [8]. In the first case the phase difference

of x1ðtÞ and x2ðtÞ vanishes for x1 ¼ x2 (the corresponding periodic regimes are labeled as 2iC0, where i ¼ 1; 2; 3; . . ., and
2i denotes the cycle period). In the second case the phase difference for the subharmonic components takes the value 2p
(the attractors are denoted as 2iC1).

Fig. 1 shows some of the bifurcational curves in the (d; l) parameter plane: ljþ1 (j ¼ 0; 1) are the curves of tangent

bifurcations of cycles 2iCj (edges of Arnol�d tongues); ljcr are the critical curves where accumulation of the period-

doubling cascades for 2iCj cycles takes place. Below ljcr periodic attractors of ‘‘in-phase’’ and ‘‘out-of-phase’’ families

demonstrate the period-doubling route to chaos (to simplify the bifurcation diagram we do not present the details of

this route). As a consequence, chaotic regimes CA0 and CA1 appear. At the curve L1, the CA1 family undergoes a

boundary crisis and turns into a chaotic saddle. Increasing l leads to the merging of the chaotic attractor CA0 with the

saddle CA1 at Lm. The resulting attractor is denoted as CAR and is characterized by two positive Lyapunov exponents.

The curve l1þ1 denotes the boundary of the synchronization region. To the right of this curve quasiperiodic oscillations

4T 2 and asynchronous chaotic dynamics CAt take place.

In Section 4 we shall discuss how the transitions from synchronous ðCAjÞ to asynchronous ðCAtÞ chaotic dynamics

(direction A in Fig. 1) and from chaos ðCAjÞ to hyperchaos ðCARÞ along the direction B are reflected in the fractal

structure of the return times to a Poincar�ee section.

4. Analysis of return times

4.1. Direction A: transition from synchronous to asynchronous oscillations

Before we discuss the transition from the synchronous chaotic attractor CA0 (or CA1) to the asynchronous attractor

CAt in detail let us look for a moment at the shapes of their singularity spectra DðhÞ calculated from sequences of return

Fig. 1. Bifurcation diagram for two coupled R€oossler systems. Only bifurcational curves that are of interest for the further analysis are

indicated here. A more detailed diagram is given in [8]. The diagram illustrates the effects of phase multistability.
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times to the Poincar�ee section x2 ¼ 0 (Fig. 2a). They show two remarkable distinctions: (i) The values of the H€oolder
exponents hð0Þ that are related to the maxima of the singularity spectra (q ¼ 0) do not coincide for the two attractors;

(ii) the width of the singularity spectrum for the asynchronous regime CAt is significantly larger than for CA0. This

means that the transition from CA0 to CAt can be described in terms of the transition from an almost monofractal (or

monoscale) structure of the return time sequence characterized by a practically linear dependence sðqÞ and by an almost

constant value of hðqÞ (Fig. 2b, black circles) to a multifractal (multiscale) structure that requires a large number of

H€oolder exponents to characterize its scaling properties (Fig. 2b, white circles). We speak here about an almost

monoscale structure for CA0 because it is rather difficult (or even impossible) to compute a singularity spectrum

consisting nearly of a single point. Estimation of the H€oolder exponents for large numerical values of q is typically

sensitive to computational parameters like the range used for fitting the scaling exponents sðqÞ. In some situations it is

unclear whether the analyzed object can be related to a class of monofractals. This is why it will be probably more

correct to speak about the degree of multifractality. Because the maximal values of the fractal dimensions D do not

show significant differences within the framework of the WTMM-approach (they are both close to 1 for the chosen

regimes) in the further discussion we will consider only changes in the spectrum of H€oolder exponents hðqÞ instead of

shapes of DðhÞ.
Similar conclusions follow from the DFA-analysis: the dependence of lg F vs. lg n is close to a constant for CA0 (Fig.

2c, black circles). Hence, the local scaling exponents a practically coincide at a 
 0:01 (Fig. 2d). However, this situation

changes dramatically in the case of asynchronous chaos (Fig. 2c and d). We can see from Fig. 2d that the local values of

a vary significantly for the considered regimes and are close to 1:0 (the case of 1=f -noise) in an interval around

lg n ¼ 2:0.
Fig. 3 demonstrates the results of more detailed investigations of the transition CA1 ! CAt when we use the Poincar�ee

section x2 ¼ 0. The appearance of asynchronous dynamics under variation of the control parameter d is clearly diag-

nosed by both the DFA-technique (Fig. 3a) and the WTMM-approach (Fig. 3b). In Fig. 3 we have denoted the range of

scaling exponents obtained by the DFA as Da, i.e., Da is the difference between the maximal and the minimal values of

local scaling characteristics; a is the mean value. By analogy, Dh is the range of H€oolder exponents. Rather similar

dependences can be obtained for other secant planes (x1 ¼ 0, y1 ¼ 0, and y2 ¼ 0). The DFA shows that the asyn-

chronous regime CAt is characterized by a value a > 0:5, corresponding to the presence of power-law correlations in the

Fig. 2. Scaling properties of the synchronous chaotic attractor CA0 (l ¼ 6:8, d ¼ 0:00934, black circles) and the asynchronous at-

tractor CAt (l ¼ 6:8, d ¼ 0:00988, white circles): (a,b) singularity spectra DðhÞ and H€oolder exponents hðqÞ of the WTMM-approach;

(c,d) root mean square fluctuations F ðnÞ (in double logarithmic plot) and local scaling exponents a of the DFA-technique.

A.N. Pavlov et al. / Chaos, Solitons and Fractals 16 (2003) 801–810 805



data series. But a is close to zero for the attractors CA0 and CA1, indicating strong anti-correlations. We can therefore

conclude that increasing the control parameter d along the direction A changes the type of correlations in the return

time sequences and results in a strong enhancement of different measures describing multiscale properties (Da and Dh in

Fig. 3).

We should emphasize, of course, that the series of return times for synchronous oscillations cannot always be

characterized in terms of monoscale objects. In particular the range of H€oolder exponents for the chaotic regime CA1

can be somewhat wider than for CA0 (Fig. 4a). However, this range is still small when compared with the state of

asynchronous chaos CAt. This is why we can generally describe synchronous oscillations in the dynamics of coupled

R€oossler systems as a regime with significantly smaller degree of multiscality than complex motions outside the syn-

chronization region. The effect of decreasing the multiscale properties was recently observed also for stochastic res-

onance [24]. By comparison with the WTMM-method that in principle allows us to distinguish between the attractors

CA0 and CA1 (although such a distinction between various regimes of a phase multistability is not always possible),

the DFA-technique appears to be a less appropriate tool because the transition CA0 ! CA1 is not well expressed in the

structure of return times. However, the DFA-approach, being a relatively easy numerical method, provides us with

the possibility to clearly distinguish between the synchronous (CAj) and the asynchronous (CAt) dynamics when

computing the range of scaling characteristics Da. For the considered case we have seen that this distinction (Fig. 3a)

is perhaps even better than for the measure Dh of the wavelet-based technique (Fig. 3b). That is why we think that a

simultaneous application and comparison of both approaches may be useful to quantify the complex structure of the

analyzed data.

Fig. 3. Scaling characteristics along the direction A (l ¼ 6:8): (a) mean values of the scaling exponents of the DFA-approach (black

circles) and the ranges Da (white circles); (b) H€oolder exponents corresponding to maxima of the singularity spectra (black circles) and

the ranges Dh (white circles). Synchronous dynamics is characterized by strong anti-correlations of the return-time sequences whereas

the statistical properties of asynchronous chaos demonstrate correlated behavior (close to 1=f -noise in some interval of scales).

Fig. 4. WTMM (a) and DFA (b) scaling characteristics for three different synchronous regimes. l ¼ 6:7, d ¼ 0:0094 for CA0 and CA1

and l ¼ 7:2, d ¼ 0:0093 for CAR. The hyperchaotic attractor CAR requires a wider range of scaling characteristics than the synchronous

attractors CA0 and CA1. DFA-approach show that statistical properties of chaotic dynamics are close enough when considering short-

and middle-term anti-correlations (the window size n < 50). However, long-term anti-correlations ðn > 100Þ are characterized by

obviously different scaling exponents.
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4.2. Direction B: transition from chaos to hyperchaos

With increasing parameter l (direction B in Fig. 1), a band-merging bifurcation of the chaotic attractors CA0 and

CA1 leads to the appearance of a new regime CAR. The attractor CAR contains the trajectories of CA0 and CA1 and has

two positive Lyapunov exponents [8]. Therefore, hyperchaotic oscillations takes place. The transition CA1 ! CAR (or

CA0 ! CAR) also leads to changes of the scaling properties that can be detected by the DFA-approach (Fig. 4b). Al-

though the local exponents of the DFA are fairly small in both cases indicating the presence of strong anti-correlations

in the data series, their dependences on the window size n used for linear fit of the local trend are quite different. The

hyperchaotic dynamics CAR requires a wider range of scaling characteristics Da than the attractors CA0 and CA1 (Fig.

4b).

The changes of the return time structure that take place under variation of the parameter l were examined by the

wavelet-based technique. The values of Dh can differ approximately by a factor of two for CA1 and CAR (Fig. 4a).

Besides this, the H€oolder exponents hðqÞ take larger values in the hyperchaotic regime. An increase of the scaling

characteristics hðqÞ and a at the transition CAj ! CAR again reflects the changes of power-law correlations in the return

times. The values a 
 h 
 0 correspond to strong anti-correlations that become weaker for the attractor CAR. Fig. 5

demonstrates the results of more detailed investigations of the transition CAj ! CAR. As a quantitative measure de-

scribing the multiscale properties we have chosen here the range of local exponents of the DFA-technique Da.

A comparison of various transitions arising at the interaction of two coupled R€oossler systems shows that the

asynchronous attractors are clearly distinguished from the synchronous ones (Fig. 6). In particular, the transition

CAR ! CAt under variation of the mismatch parameter is similar to that in Fig. 3. At the same time, following the

results presented in Fig. 6, an analysis of the scaling properties can provide a diagnostics of different dynamical regimes

such as inside the synchronization region (CA0 and CAR) and outside this region (4T 2 and CAt). Below the curve hðqÞ for
the attractor CAR other spectra of H€oolder exponents for various synchronous regimes (chaotic or periodic) could be

drawn (we omit them here because these curves practically coincide with hðqÞ for CA0).

4.3. Scaling properties of return times at the presence of noise

Let us consider the changes of the return time structure caused by the influence of noise. For this purpose we have

included Gaussian white noise additively to the first equation of the coupled R€oossler oscillators (8), i.e., we have added a

term InðtÞ, where I is the intensity of normally distributed random process. Because external fluctuations can lead to

intermittency between coexisting regimes it is expected that the scaling properties of the noisy dynamics will not be the

same as for the deterministic case. Numerical calculations testify this. In particular, the behavior of the scaling char-

acteristics at the transition from synchronous to asynchronous motion is smeared out, without clearly expressed

‘‘jumps’’ (Fig. 7) that could serve as indicators of the boundary of the synchronization region (compare with Fig. 3).

A high sensitivity to external fluctuations arises even in the case of co-existing periodic oscillations. Such regimes do

not have fractal properties in the case of deterministic motions (a ¼ h ¼ 0), however, the process of intermittency

between different periodic attractors caused by the noise can result in strong multifractality of the return time dynamics

as it can be shown by the WTMM-technique (Fig. 8) as well as by the DFA.

6.2 7.4
0.00

0.18

µ

∆
α

Fig. 5. Range of local scaling exponents Da vs. parameter l for d ¼ 0:0093. We note the transition to a merged attractor at l 
 7:05.
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Chaotic regimes inside the synchronization region are also rather sensitive to fluctuations. The scaling exponents

hðqÞ or aðnÞ in this case can be close to the characteristics of the intermittency process between periodic regimes given in

0.0

1.0

h(0)

δ0.009 0.010

α ,

Fig. 7. Scaling characteristics a (white circles) and hð0Þ (black circles) vs. the control parameter d in the case of stochastic dynamics

(l ¼ 6:8, I ¼ 10�1).

Fig. 6. H€oolder exponents for synchronous (�) and asynchronous (M) dynamics. l ¼ 6:7, d ¼ 0:0094 for CA0, l ¼ 7:2, d ¼ 0:0093 for

CAR, l ¼ 6:8, d ¼ 0:0098 for CAt and l ¼ 6:2, d ¼ 0:0098 for 4T 2.

Fig. 8. Scaling properties of stochastic synchronous (�) and asynchronous (M) motions (I ¼ 10�1). Here, the notations 4Cj and CAj

refer to the process of intermittency between the corresponding periodic or chaotic attractors caused by noise. Stars correspond

to periodic oscillations 4C0 at the absence of fluctuations (d ¼ 0:0093, l ¼ 6:2). Parameter values for other regimes are the same as in

Fig. 6.
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Fig. 8. As a result, it may be impossible to distinguish between different types of noisy dynamics. But, if the intensity of

a normally distributed random process is relatively low (say, <10�1) and we do not consider a neighborhood of the

boundary of the synchronization region then the scaling properties of synchronous and asynchronous dynamics ob-

viously do not coincide for negative q (Fig. 8). Note that according to Fig. 8 the direction A does not manifest a

transition from monoscale to multiscale structure in the case of noisy dynamics and even the opposite effect (decreasing

multiscale properties) may be observed in numerical experiments. With increasing noise intensity the scaling properties

of various stochastic motions becomes very similar (Fig. 9).

5. Conclusions

Interactive dynamics of two coupled chaotic oscillators can produce a variety of phase-locked and multistable re-

gimes. These regimes have different metrical and dynamical properties and can be characterized by various mathe-

matical approaches. Complex dynamics of interacting units is usually reflected in the complex structure of typical

temporal scales (like return times, for instance). To quantify this structure we considered two well-known techniques,

namely, the WTMM method and DFA. Both approaches are rather universal tools of processing experimental data

that can be applied independently on whether the analyzed time series is stationary or not.

By studying regimes with different phase and frequency properties inside and outside the synchronization region, in

the case of deterministic dynamics we demonstrated that the transition from asynchronous to synchronous motion

reduces the degree of multiscality of the dynamic processes. Sometimes it can even be described as a transition from a

multiscale structure of the return times to an almost monoscale structure. Regimes inside the synchronization region

corresponding to the case of a phase multistability can be distinguished using the scaling characteristics of the

WTMM-method. However, the differences are fairly small. Merging of the chaotic attractors CA0 and CA1, leading to

a hyperchaotic dynamics CAR, resulted in some increase of the scaling exponents of the DFA-approach. This means

that the strong anti-correlations in the return times that exists for the attractors CA0 and CA1 becomes weaker for

CAR.

External fluctuations lead to more complicated dynamics of the coupled R€oossler systems. Fluctuations reduced the

differences between the various types of synchronous motion and removed the clearly expressed boundary of the

synchronization region. However, if the noise intensity is reasonably low the synchronous and asynchronous motions

can still be distinguished using the spectrum of H€oolder exponents of the wavelet-based technique because the considered

regimes demonstrate different scaling for negative values of q related to small fluctuations (weak singularities) in data

series.
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