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Abstract

We suggest to present a discrete sequence of cardiointervals in the form of a smooth time dependence and for the given time series

compute the largest Lyapunov exponent. Processing the database with RR-intervals of patients su�ering from coronary artery disease

(CAD) has shown that the largest Lyapunov exponent can be a diagnostic criteria allowing one to distinguish between di�erent groups

of patients with more con®dence than the standard methods for time series processing accepted in cardiology. Ó 2000 Elsevier Science

Ltd. All rights reserved.

1. Introduction

In recent years there has been a growth of interest of specialists in nonlinear dynamics to the problems of
diagnostics in medicine and biology [1±21]. Beginning with the works [1±6] more and more scientists turn to
the analysis of chaotic dynamics of various phenomena including functioning of alive organisms. Such an
approach opens wide possibilities to apply powerful tools of nonlinear dynamics for the purpose of
diagnostics.

Signals of electric activity of a heart, namely, electrocardiograms (ECGs), attract the attention of many
researchers. For the present moment a large amount of works is known devoted to the study of ECG which
has been ful®lled by either specialists in medicine with the use of some knowledge of nonlinear dynamics or
by the physicists not possessing fundamental knowledge in physiology but having a large experience in
processing the signals of complex structure (e.g., [7±23]). A large number of publications in this area require
some generalization (standardization) of the known methods for time series analysis to reveal the most
informative ones which can be recommended for diagnostic [24].

At present the majority of the researchers prefer to deal not with the ECG but with the sequence of RR-
intervals, i.e., the time distances between the neighboring R-peaks. This fact can be explained as follows.
First, keeping a database of ECGs requires much more computer memory than keeping of RR-intervals.
Second, on the opinion of cardiologists, just RR-intervals contain information about a functional state of a
cardio-vascular system of organism, while a typical PQRST-complex repeats itself at every heartbeat with
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minimal distortions. An important characteristics of ECG is heart rate variability, i.e., variation of RR-
intervals in time.

Well-known methods for the analysis of RR-intervals are given in the most complete form in the review
[24]. The aim of the present research is to develop a technique for computing the largest Lyapunov ex-
ponent for a discrete sequence of cardiointervals and to experimentally prove the applicability of this
method for the purposes of diagnostic of cardio-vascular system of a human.

2. The ways of how to present RR-intervals

For our task an important problem is how to present a sequence of RR-intervals. A traditional way is to
plot the value of RR-interval versus the number of a heartbeat (Fig. 1). Such a dependence allows one to
immediately evaluate the range of cardiointervals variation, build a probability density and compute some
momental functions (RR; r2

RR). To perform spectral analysis a temporal axis is necessary, that is why
usually the number i is multiplied by the value of RR. As one works with short realizations (65 min) for the
better frequency resolution sometimes autoregressive methods or Fast Fourier Transform with di�erent
correlation windows are used.

Note that the traditional representation of RR-intervals (Fig. 1) seems to be rather arti®cial from the
point of view of physics while another representation seems more reasonable (Fig. 2(b)). If all R-peaks are
substituted by d-peaks (Fig. 2(b)) while all the other peaks are excluded from consideration one is able to
compute the power spectrum analytically [25].

Since the value of RR-interval is determined with a certain accuracy which is de®ned by the sampling
step Dt with which the ECG is recorded, the coordinate of d-peak is given with an error Dt. That is why one
can consider a sequence of rectangular impulses with the width Dt and ®nite amplitude (Fig. 2(c)) instead of
d-peaks. For such a sequence one is able to analytically compute the power spectrum, too.

3. Computing largest Lyapunov exponents of RR-sequences

Spectral and correlation analysis are well-known and have been widely used for the processing of time
series far before the concept of dynamical chaos has been established. Along with the latters, in recent years
di�erent entropies are being calculated for RR-intervals. Since computation of Shannon entropy
H � ÿPN

i�1 pi ln pi for open systems is incorrect, the entropy should be normalized to the system's energy.
Thus, a renormalized entropy Hp � H=E can be used for RR-intervals, where E is a magnitude proportional
to total energy of the system in the frequency range meaningful for diagnostic or an entropy computed on
the power spectrum and renormalized to the value E ÿ Hs or other types of renormalized entropies
[19,20,26]. The progress of nonlinear dynamics allows us to hope that new criteria can be developed which
could be used in medical diagnostic.

At present the papers appear where besides the traditional methods of RR-intervals processing (com-
puting momental functions, spectral analyzing, etc. [24]) correlation dimensions are computed [2,10] and

Fig. 1. Dependence of the value of RR-interval (in ms) on the number of heart contraction.
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phase portraits are analyzed [11±13]. Kolmogorov entropy and Lyapunov exponents have not been eva-
luated from the short sequences of RR-intervals since one of the generally accepted methods [27] requires
smooth signal.

To pass from the discrete signal to the continuous one may introduce the phase for the sequence of
cardiointervals. At present di�erent ways of how to introduce the phase are known [28]. The most simple
way is to consider the time moments ti at which some events happen (e.g., crossing of the continuous signal
of some threshold level). Supposing that the phase varies with respect to the linear law between these time
moments introduce the following formula:

u � 2p
t ÿ ti

ti�1 ÿ ti
� 2pi; ti6 t < ti�1: �1�

Basing on this formula we suggest to transform the sequence of cardiointervals into a smooth temporal
dependence (Fig. 2(d)):

a�t� � cos 2p
t ÿ ti

RRi
; ti6 t < ti�1; �2�

where ti and ti�1 are the time moments corresponding to the appearance of R-peaks in the ECG.
Since the growth of phase in the interval between the two R-peaks is considered to be linear according to

Eq. (1) and the segments of cosines with di�erent periods are ``sewed together'' at the points u � �2pi, the
®rst derivative of the signal (2) does not su�er discontinuities. Thus, the suggested way of transition from a
discrete series to a smooth signal (2) allows one to apply the method of largest Lyapunov exponent
computation [27] to a�t�. 1

1 It is known [29,30], that one is not always able to compute the true value of largest Lyapunov exponent (k1) on a one-dimensional

realization, in general algorithm [27] allows one to de®ne some characteristics K of divergence of near-in-space phase trajectories or a

measure of predictability which di�ers from the classical Lyapunov exponent. However, since for autonomous dynamical systems

without noise forcing K � k1, this characteristics is associated with the largest LCE when the experimental data of biological origin are

being processed [2], the latter being often not correct. In the present work we use the established terms and refer to the value computed

by method [27] as to the Lyapunov exponent. The problem about the relation between k1 and K requires a separate detailed

investigation which we plan to realize in future.

Fig. 2. Original ECG (2a) and di�erent ways for presenting RR-intervals: as a sequence of d-functions (2b), sequence of rectangular

impulses (2c) and a smooth time series (2d).
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In the present paper we suggest one of the most simple ways of how to pass from a discrete signal to a
smooth time dependence. Under transformation (2) the sequence of RR-intervals is transformed into a
smooth dependence a�t� being a signal with a complex frequency modulation. The main approximation of
this model is the supposition that the instantaneous frequency is constant between the heart contractions.
Our research corresponding to a more general case when we considered that the instantaneous frequency is
the function of time [31] has shown that this supposition leads to an error in estimating the quantitative
value of largest Lyapunov exponent. But the sign of it and its dependence on the regime of system's
functioning is in good correspondence with the exact values computed for the case when the dependence of
instantaneous frequency on time was taken into account. To prove everything stated above consider how
the suggested ``cosine method'' works for a test models, namely, for modi®ed oscillator with inertial
nonlinearity (Anishchenko±Astakhov oscillator [32,33]):

dx
dt
� mx� y ÿ xz;

dy
dt
� ÿx;

dz
dt
� ÿgz� 0:5g�x� jxj�x �3�

and R�ossler system [34]:

dx
dt
� ÿ�y � z�; dy

dt
� x� ay;

dz
dt
� b� z�xÿ c�: �4�

For such systems the analogue of RR-intervals can be introduced as the time distances between the
successive maxima of some state variable (e.g., x�t�). We passed from the inter-maxima distances to the
signal (2) and computed largest Lyapunov exponent k1 using the method [27] for di�erent values of control
parameters of the test models. Fig. 3 allows one to get sure that even if the largest LCE computed from the
signal a�t� (Fig. 3b,d) does not coincide with the true value of the exponent (Fig. 3a,c), it follows quali-
tatively the system's dynamics. Since when solving the diagnostics problem we are interested not in ob-
taining the exact value of Lyapunov exponent, but in establishing some objective criteria of di�erent
dynamical behavior, it is not of principal importance whether we compute the true value of LCE of some
quantity which is proportional to it. Let us turn to experimental results.

Fig. 3. Dependence of the value of Lyapunov characteristic exponent (LCE) on the values of control parameters of oscillator with

inertial nonlinearity and R�ossler system: a; c are the true values of exponents for the systems (3) and (4), respectively; b; d are the

Lyapunov exponents computed from the signal shown in Fig. 2d when the time intervals between the successive maxima of coordinate

x�t� were used as an analogue of RR-intervals.
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4. Distinguishing between groups su�ering from coronary artery disease of di�erent degrees

Forty patients of Saratov cardiocenter were included into the research su�ering from coronary artery
disease (CAD) of di�erent degrees without clinical signs of heart disease. The basic methods for diagnostic
of coronary artery disease (CAD) include:

± tolerance determination (the maximum admissible exercise which the patient is able to endure, i.e., the
level of physical work-ability);
± Robinson index determination (characteristics showing the oxygen consumption by a myocard under
75% of the physical exercise admissible for the age of the patient) and are based on such instrumental
methods as coronarography, Holter monitoring of ECG, exercise test.
From the given list one can see that clinical methods for diagnostics of CAD are based on the series of

criteria not including processing of RR-intervals. At the same time an important task of cardiology is the
possibility of diagnostics just from the sequence of RR-intervals since they contain information about the
state of the whole cardio-vascular system of an organism (this is a working hypothesis of cardiologists) and
also their analysis does not require expensive equipment.

In the study all the patients (men) were divided into two groups according to the results of exercise test
on CAD. The persons for whom the result of this test was positive formed the ®rst group (24 people), while
those for whom the result was negative formed the second group (16 people). The aim of our research is to
reveal the criteria important for diagnostics which can be obtained from the processing of cardiointervals
by means of very di�erent methods for time series analysis.

The data bank available contain 80 ®les, two for each patient (with approximately 350±500 point in each
®le.) The ®rst recording of RR-intervals was made in the resting state, and the other one was made under
loading of 25 Wt. The loading was as follows: the patient was turning the pedals of veloergometer with the
velocity of approximately 60 turns per minute. After the velocity of turning had been stabilized (this was the
end of transient process from the resting state to the loading) the sequence of cardiointervals was recorded
during 5±7 min.

For all the time series from the data bank available a series of characteristics were computed which are
described below. Using the terms of review [24], we considered the time domain and frequency domain
characteristics: average value (RR); variance (r2

RR); energy in the range of lower frequencies (LF) [0.04,
0.15] Hz (ELF); energy in the range of higher frequencies (HF) [0.15, 0.4] Hz (EHF); the ratio of oscillation
energies (ELF=EHF). Along with the quantities mentioned above which are widely used in medicine we also
used the following statistical and dynamical characteristics: entropy computed for the distribution of RR-
intervals and renormalized to the value which is proportional to the total energy of oscillations in the
frequency range LF+HF (Hp); entropy computed for the power spectrum and renormalized to the value
which is proportional to the total energy of oscillations in the frequency range LF+HF (Hs); largest
Lyapunov exponent computed by means of the algorithm [27] for the ``cosine methods'' suggested in this
paper (k1). The results of investigation of both groups are as follows (Table 1):

1. Only two characteristics, namely, normalized entropy computed from the power spectrum (Hs) and
the largest Lyapunov exponent (k1) allow one to distinguish between the two groups. 2 In the ®rst case the
diagnostic criteria is the value of Hs under loading of 25 Wt: in the ®rst group 18 people from 24 (75%) give
Hs6 9:6 while in the second group 11 persons from 16 (�69%) give Hs P 9:6. Thus, the use of Hs allows us
to identify correctly the membership of 29 persons from 40 (�72.5%) in one or another group.

In the second case, diagnostics is based on the reaction to the loading. In the ®rst group for 17 of 24
persons (�70.8%) the largest LCE becomes less under loading, while in the second group it increases for the
12 persons from 16 ones (75%). Computation of Lyapunov exponent allows us to identify also 29 persons
from 40 (�72.5%).

All the other characteristics from those mentioned above do not give reliable diagnostics (namely, the
probability of being associated with one group or another is less than (65%).

2 In cardiology distinguishing between the groups means that the selected criteria allows one to make diagnostics in more than 2
3

of

cases.
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2. Computation of largest Lyapunov exponent is more preferable than computation of Hs since it gives a
qualitative e�ect, namely, ordering or chaotization of oscillations under external in¯uence (loading), while
Hs is a quantitative criteria. A certain level of Hs is introduced conventionally. Also, since for 11 of 40
patients the values of Hs were obtained belonging to the interval [9.5, 9.7] a high precision of entropy
computation is necessary, and, as a consequence, a high precision of power spectrum computation.

3. Finding Lyapunov exponent [27] assumes reconstruction of the phase portrait on the one-dimensional
realization and the corresponding choice of the algorithm parameters (the embedding dimension, time
delay s, etc.) [35±37]. Since for some patients the value of k1 varied slightly for the given parameter values
we analyzed the dependence of k1 on parameters. In Table 1 the values of k1 are given for the ®xed em-
bedding dimension N � 5. Each value of k1 is averaged over the results obtained for di�erent values of s so
that for every value the reconstructed phase portrait does not stretch signi®cantly in some selected direc-
tion. Such a procedure requires much more time than computation of all the other characteristics, but it
allows to trust the obtained results to a larger extent.

4. Chaotization (or ordering) of oscillations under external forcing which can be detected by the in-
creasing (or decreasing) of the value of k1 is accompanied by the signal's structure. Therefore, a question
inevitably arises: why these changes were not detected by means of other computed characteristics, for
example, power spectrum?

Table 1

The results of cardiointervals processing for the patients su�ering from coronary artery disease

State Group

number

The number of

patients in the group

The results of diagnostic using

Variance, r2
RR Entropy, Hs Lyapunov

exponent, k1

Resting 1 24 13 16 We investigate

response on the

loading

2 16 8 8

Loading 25 Wt 1 24 15 18 17

2 16 9 11 12

Fig. 4. The typical power spectra computed for the RR-sequences of patients su�ering from CAD for both groups while resting (Fig.

4(a,b)) and for loading of 25 Wt (Fig. 4(c,d)).
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Our research has shown that the response to the loading is not identical for patients even from the same
group. For a part of patients the increase of LCE is accompanied by the increase of the energy of oscil-
lations in the higher frequency range (HF), while for the others the power spectrum is being varied in the
range of ultra-low frequencies (ULF) ( f < 0:04 Hz). Taking into account the fact that computation in the
range of ULF are not reliable for the short time series and also due to the absence of identical response to
loading we were unable to establish a diagnostic tool using spectral analysis. Note that in agreement with
the well-known standards of measurement [24], we took into account only a limited frequency range [0.0,
0.4] either for spectrum or for entropy computation. As is shown in Fig. 4, the power spectra computed for
the RR-sequences of the patients of both groups are of the same type.

5. Conclusions

In the present work a method for RR-intervals presentation is suggested allowing one to apply to the
given type of time series the algorithm for largest LCE computation. As our study has shown, for the given
examples Lyapunov exponent may serve as a diagnostic tool allowing one to distinguish between the
groups of patients more reliably than the standard for cardiology methods for time series analysis.

Our research includes the data measured from only 40 patients. Certainly, larger groups are necessary to
verify the possibility of diagnostics according to the value of k1.

The advantage of the ``cosine method'' suggested in the present work is that it can be applied not only to
RR-intervals, but also to a series of other data, for example, to ``inter-spike intervals'' (ISI) for neurons.

The transition from the sequence of discrete values to the smooth time dependence and the possibility to
compute dynamical characteristics for signals generated by neurons allow us to hope that Lyapunov ex-
ponents will be added to the number of characteristics which are traditionally computed in recent years for
the data of ISI type.

The current study was partly supported by INTAS grant 96-0305.
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