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Many natural processes are nonstationary and
exhibit strong temporal variations of their characteris-
tics. Classical methods used for analysis of the struc-
ture of signals have been mostly developed for the
investigation of stationary random processes, and the
application of such methods to the analysis of nonsta-
tionary data frequently leads to problems in the inter-
pretation of results. For example, the appearance of two
peaks at nonmultiple frequencies in the power spectrum
of a system can be related to principally different situa-
tions, where the system either simultaneously features
two independent modes or exhibits frequency switch-
ing and only one of the two modes can be detected at
each moment of time. Special methods have been
developed for the processing of nonstationary data, the
best known and most frequently used being wavelet
analysis [1–3]. In contrast to classical spectral analysis,
this method not only reveals the presence of different
characteristic rhythms, but it also allows both instanta-
neous frequencies and amplitudes of the corresponding
rhythmic components to be evaluated and their tempo-
ral evolution to be traced.
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 is the basis set (wavelet) function. In inves-
tigations of the rhythmic components (modes) of
dynamic processes, it is a common practice to use the
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 characterizes the frequency resolution; the
relationship between the scaling parameter 
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of an analyzed rhythmic component is
given by the ratio 
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. The temporal variation of
instantaneous frequencies and amplitudes of the char-
acteristic rhythms is studied by determining the local
maxima of coefficient
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If the dynamics of a system simultaneously exhibits
several independent modes, these components can be
involved in various interactions, in particular, with syn-
chronization of oscillations [6]. Another example is
offered by the modulation of the amplitude or fre-
quency of a fast mode by slower modes. This interac-
tion can be readily revealed by an analysis of the fast
(modulated) dynamics. In practice, however, this situa-
tion may encounter difficulties if only the slowly vary-
ing component (in which the fast dynamics is hidden)
can be measured in experiment. The problem is even
more complicated under conditions of nonstationary
rhythms, where the frequency and/or amplitude of
modulation are subject to temporal variations. If these
characteristics exhibit strong variations, difficulties can
arise in the separation of rhythmic components from
the time series by means of the band filtration proce-
dure. Indeed, a transmission band for the fast mode sep-
aration can be selected as neither too narrow (because
of the nonstationary character) nor too wide (in order to
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eliminate harmonics of the slow mode). In such cases,
the mode dynamics is expediently studied by means of
wavelet analysis based on relation (1).

In this Letter, we describe a special approach
employing the double wavelet technique [7, 8], which
is intended to reveal features in the amplitude and fre-
quency modulation of oscillations under nonstationary
conditions. The idea of the proposed approach consists
in using the separated instantaneous frequencies or
amplitudes as the initial signal for another, secondary
wavelet transform (1), which provides information
about all components involved in the modulation of fast
dynamics by slow processes.

Let us consider the possibilities provided by the pro-
posed approach on several examples. The first example
is the model of a generator of chaotic radio signals
(oscillator with inertial nonlinearity) [9]:

(3)

By varying the control parameters of system (3), it is
possible to obtain various regimes, including that with
automodulation, which is characterized by relatively
slow oscillations of 
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) and faster dynamics of 
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). In order to complicate the task, let us consider the
case of a nonstationary dynamics (transient chaos) with
the time series depicted in Figs. 1a and 1b. Investigation
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of the 
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) signal structure by means of the double wave-
let transform allows the instantaneous frequency and
amplitude of the fast mode to be determined after the
primary transformation of the slow variable (Fig. 1c).
Then, the secondary wavelet transform yields the
instantaneous frequencies of the amplitude and fre-
quency modulation. As can be seen from Fig. 1d, these
frequencies virtually coincide with the instantaneous
frequency of slow dynamics in 
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(
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). Thus, it can be
ascertained that the double wavelet analysis of slow
phase variables under the conditions of interacting
modes provides information about the characteristics of
modulation and their temporal variation.

In order to check for the applicability of the double
wavelet analysis under the conditions of complex non-
stationary dynamics with a large number of rhythmic
components, let us consider oscillatory processes
encountered in the functioning of objects of a living
nature. An example is offered by the dynamics of neph-
rons (structural elements of renal tissue). The results of
experimental investigations performed in recent years
on rats showed that nephron dynamics contains at least
three independent rhythms, which can interact with
each other: (i) relatively fast dynamics (5–10 s),
(ii) a slower rhythm (30–40 s), and (iii) a very slow
rhythmic process (100–200 s). The corresponding
oscillatory processes are regular at a normal arterial
pressure and become irregular under hypertensive con-
ditions (Figs. 2a and 2b). Experimental dynamics in the
latter case is extremely complicated, since the process
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Fig. 1.

 

 Typical dynamics of a model generator of chaotic radio signals described by Eqs. (3): (a, b) time series of 

 

x
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) and 

 

z

 

(
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) vari-
ables in the automodulation regime (
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 = 2.90328, 
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 = 0.012505, 
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= 5 

 

×
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); (c) instantaneous frequency of a fast mode revealed
by wavelet transform of the 

 

z
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t

 

) signal; (d) temporal variation of the instantaneous frequencies of (

 

1

 

) the slow mode and the
(

 

2

 

) amplitude and (

 

3

 

) frequency modulation of the fast mode (curve 
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 was obtained using wavelet transform of
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) variable, and
curves 
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and
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 were obtained by double wavelet transform).

 

•

 

*

 

�

 

1
2
3



 

882

 

TECHNICAL PHYSICS LETTERS

 

      

 

Vol. 32

 

      

 

No. 10

 

      

 

2006

 

PAVLOV, PAVLOVA

 

characteristics exhibit strong variation with time. This
example is a good test for the efficiency of the proposed
approach based on the double wavelet transform tech-
nique. The results of analysis of a rather large experi-
mental data array (about 80 experiments) showed that
interactions between the three rhythms in the cases of
normal and increased arterial pressure are substantially
different. The latter situation is characterized by a
stronger interaction of modes, which results in deeper
amplitude and frequency modulation. Thus, changes in
the regimes of functioning of the living system can be
described using the parameters of modulation of oscil-
latory processes, that is, in well-established terms of
radio physics.

The latter system illustrating the functioning of liv-
ing objects was selected in order to give an example of
highly complicated dynamic processes. We have stud-
ied possibilities of the double wavelet analysis in a
number of other model systems, including the classical
cases of amplitude and frequency modulation used in
radio engineering (which can be modeled using two
harmonic functions), generators of periodic oscillations
under external action, etc., (including system with arti-
ficially introduced nonstationary elements). All these
tests showed coincidence of the data of double wavelet
analysis and the anticipated results. In particular, for the
above example of a chaotic oscillator (3), a comparison
of the modulation depth calculated using the time series
of 

 

z

 

(

 

t

 

) to the characteristics of 

 

x

 

(

 

t

 

) (considered
unknown) determined by double wavelet analysis
showed good quantitative coincidence.

We believe that the proposed method offers a new
powerful tool for investigations into the phenomenon of
nonlinear interaction of modes in nonstationary dynam-
ics of various processes irrespective of their nature.
This approach can be used for the analysis of interac-
tions involving three (and, probably, more) rhythmic
components in radio engineering systems and in vari-
ous applications of radiophysical techniques.
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Fig. 2. 

 

Typical nephron dynamics: (a, b) time series of sig-
nals corresponding to the normal and increase arterial pres-
sure, respectively; (c) the values of amplitude (
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a

 

) and fre-
quency (
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f

 

) modulation of a slow (30–40 s) mode by a very
slow (100–200 s) process at normal (open circles) and
increased (black circles) arterial pressure; (d) same for the
modulation of a fast (5–10 s) dynamics by the slow
(30

 

−40 s) mode. Note that the modulation depth is signifi-
cantly increased under hypertensive conditions.
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