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Abstract

We investigate the scaling features of complex motions in systems of two coupled chaotic
oscillators by means of the wavelet-transform modulus maxima method and the detrended 2uctua-
tion analysis. We show that the transition from asynchronous to synchronous dynamics typically
reduces the degree of multiscality in the characteristic temporal scales. Correlation properties
caused by adjustment of the involved time scales are discussed, and experimental results for
coupled functional units of the kidney are analyzed.
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1. Introduction

Synchronization is a universal phenomenon in the interaction of nonlinear oscilla-
tors [1,2]. Within the frameworks of the classical theory, synchronization involves the
entrainment of periodic processes and a locking of their frequencies to rational ratios.
Synchronization may also take place via the suppression of the inherent dynamics of
one of the interacting oscillators. Coupled chaotic oscillators demonstrate a signi>cantly
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wider range of entrainment forms, depending on the degree to which the interacting
units can adjust their motions relative to one another. Examples of such chaotic en-
trainment phenomena are full synchronization [3,4], lag synchronization [5], generalized
synchronization [6], and phase synchronization [7]. The phenomenon of chaotic syn-
chronization >nds a variety of technical applications in secure communication and in
the surveillance and control of systems that display complex dynamics [3,8]. At the
same time, synchronization of chaotic oscillators may play an essential role in the
dynamics of many biological systems such as, for instance, the nephrons of the kidney
and the insulin producing beta-cells of the pancreas [9].
During the last few years the interactive dynamics of chaotic systems has been the

topic of a large number of studies, and diGerent criteria to diagnose the synchronous
state have been proposed. For oscillators that demonstrate the period-doubling route to
chaos such diagnostics can often be provided by means of Fourier power spectra [10].
The spectral analysis allows us to search regions in parameter space where a locking
of the basic frequencies takes place (similar to the Arnol’d tongues of coupled limit
cycle oscillators). Another technique operates with the mutual instantaneous phases of
the oscillators and de>nes entrainment as the appearance of some restricted variation
between them [7]. This allows us to diagnose a state of chaotic phase synchronization
where the oscillators adjust their phases respective to one another, but the amplitudes
vary quite diGerently. Among the useful tools to study chaotic synchronization phenom-
ena are also the coherence function or cross-spectrum [10], the mean return time to a
PoincarIe section [11], the transverse Lyapunov exponents [2], the diGusion coeKcient
of the phase diGerence [12], etc.
Interaction of chaotic oscillators changes the structure of the attractors that exist

in the absence of coupling. These changes are re2ected in the characteristic temporal
scales and, hence, in the return times to a PoincarIe section. Sequences of return times
corresponding to chaotic motions have complex multiscale structures and can some-
times be considered as examples of the so-called multifractal processes [13–15]. Unlike
homogeneous signals with a well-de>ned monoscale structure, such as 1=f, white, or
Brownian noise, the local scaling for multifractals does not remain the same throughout
the evolutionary dynamics [15,16].
In practice, the scaling features of complex processes can be studied by means of

various numerical approaches originating in classical correlation and Fourier analyses.
The shapes of the correlation function C(�) and the spectral density S(f) allow one to
conclude whether the scaling behavior of a time series can be described by power-law
dependences of the type C(�) ∼ �−� and S(f) ∼ f−� with the single exponents �
or �. One of the disadvantages of these two approaches arises from their restriction
to stationary data. Since many processes in Nature are highly inhomogeneous and
nonstationary, from the viewpoint of possible applications the attractiveness of a par-
ticular technique depends on its generality (e.g., its lack of restrictions with respect to
the homogeneity and the stationarity of the data series). Among such rather universal
(and at the same time eGective) tools for signal processing the detrended 2uctuation
analysis (DFA) [17] and the wavelet transform modulus maxima (WTMM) method
[18,19] are particularly useful. The DFA-technique represents a variant of the root
mean-square analysis of a random walk allowing us to investigate scaling properties of



A.N. Pavlov et al. / Physica A 316 (2002) 233–249 235

nonstationary time series and clearly detect the presence of long-range correlations.
Within this framework, the standard error of a linear interpolation of a random walk
versus the size of the interpolation segment is analyzed. The WTMM-approach is re-
lated to the methods for studying multifractal phenomena and addresses the description
of complex signals by using the notion of the singularity spectrum D(h), where D
is the fractal dimension of the subset of data characterized by the so-called HMolder
exponent h [18,19]. The values of the HMolder exponents quantify the local scaling and,
in general, do not coincide for diGerent parts of an inhomogeneous process.
In the present paper, we investigate the transitions from an asynchronous to a syn-

chronous regime for systems of two coupled chaotic oscillators in terms of the multi-
scality in their motions. Using both the DFA- and the WTMM-approaches, we study
the structure of return time sequences for various processes in the complex dynamics
of the interacting units. We start with a system of coupled RMossler oscillators that serve
as a simple model demonstrating the period-doubling route to chaos. Each subsystem
in this model has a clearly expressed basic frequency. Next, we extend our approach
to systems with several characteristic time scales, being deterministic or statistical in
origin. We consider two coupled Lorenz systems and a model of interacting nephrons
in the kidney [9]. Chaotic motion in the Lorenz oscillator can be quanti>ed by means
of two frequencies: the >rst is associated with the movement around one of the unstable
foci, and the second corresponds to the switching process when the unit is considered
as a bistable system [20]. The nephron model [21] represents an example of a sys-
tem that displays oscillations at two diGerent characteristic scales, namely relatively fast
oscillations associated with the myogenic dynamics of the aGerent arterioles, and slower
oscillations arising from the delay in the tubuloglomerular control of the incoming
blood 2ow. The two time scales can be studied separately by taking diGerent phase
variables (or secant planes). We show that the interaction of coupled chaotic systems
signi>cantly changes the scaling properties of return time series leading to the loss of
multiscality (or more generally to a reduction of its degree). We discuss correlation
changes at the transition to the synchronous state and report features of multifractal
characterization of the phase synchronization phenomenon for the considered models.
Finally, experimental results for nephrons displaying complex oscillations in their tubu-
lar pressures are analyzed, both for the case when the nephrons are synchronized and
for the case of nonsynchronized dynamics.

2. Methods

2.1. Detrended 5uctuation analysis

The DFA-approach is based on the idea of construction a running sum from a data
series z(i); i=1; : : : ; N ; over a given time scale. Such a procedure implies the building
of a random walk with the values of the original data z(i) used as increments.
An algorithm for detrended 2uctuation analysis has several stages [17]. First, the

mean value Oz is removed from z(i) and the running sum is constructed as follows:
y(k) =

∑k
i=1 [z(i) − Oz]. Second, y(k) is divided into nonoverlapping boxes of length
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n, and in each box the line segment representing the local trend yn(k) is estimated
via a least-squares >tting. The diGerence between the original walk displacement y(k)
and the local trend yn(k) is considered as the detrended walk [22]. After subtracting
yn(k) from y(k) the root mean-square 2uctuation F(n) is estimated:

F(n) =

√√√√ 1
N

N∑
k=1

[y(k)− yn(k)]2 : (1)

Such calculations are performed for a wide range of values of the box length. Further,
one searches for a power law describing the dependence of the 2uctuation on the box
size: F(n) ∼ n�, i.e., for a linear relationship between lgF and lg n that signals the
presence of scaling. In practice the exponent �, being the slope of the corresponding
line, may not be constant for diGerent regions of n. This re2ects a varying scaling
behavior of the data series, and in such situations more detailed analysis based on
estimation of local exponents can be performed [23].
Numerical values of � characterize diGerent types of correlations if � �=0:5 and

uncorrelated dynamics for � = 0:5. In particular, 0:5¡�¡ 1 is related to power-law
correlations where large values in the series of data are more probably to appear after
large values, and vice versa. The range 0¡�¡ 0:5 re2ects anti-correlated behavior
(alternation between small and large values). �¿ 1 marks correlations that are not of
a power-law form, and �= 1 corresponds to 1=f-noise [17].

2.2. WTMM-technique

Another approach to the study of complex scaling phenomena consists in the use of
the concept of multifractals [13,14]. Initially, this concept was introduced for singular
measures and provided a statistical description of their scaling properties in terms of
the so-called singularity spectrum [14].
However, from the application point of view the possibility to analyze singular func-

tions (signals) is more attractive. Several attempts have been made to extend the idea
of multifractals to this situation. A >rst attempt was the structure function method orig-
inally proposed to investigate fully developed turbulent 2ows [24]. Later, the wavelet
based multifractal formalism (the WTMM-approach) has appeared [18,19] and it is
now the more popular technique for studying multiscale phenomena in nonstationary
and inhomogeneous processes.
The analysis of a function f(x) with the WTMM-approach is performed in the

following way. In the >rst stage, the wavelet transform coeKcients are estimated:

T [f](x0; a) =
1
a

∫ ∞

−∞
f(x) 

(
x − x0

a

)
dx : (2)

Often, a random walk displacement is considered for f(x). a is the scale parameter, and
 is the wavelet “mother” function that can have a rather arbitrary shape, although it
should be soliton-like with zero average. In this work, we used the so-called Mexican
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hat wavelet which is the second derivative of a Gaussian function:

 =
d2

dx2

[
exp

(
−x2

2

)]
: (3)

A local singular behavior of f(x) at the point x0 results in an increase of |T [f](x; a)|
as x → x0 and can be characterized by the HMolder exponent h(x0) that quanti>es the
scaling of the wavelet coeKcients for small a: T [f](x0; a) ∼ ah(x0).
Further, the statistical description of local singularities is performed using the notions

of the singularity spectrum D(h) and of the partition function Z(q; a) [19]. Brie2y
speaking, Z(q; a) is the sum of qth powers of the local maxima of |T [f](x; a)| at the
scale a [28]. It is expected that for small values of a the partition function follows the
power law [18,19]:

Z(q; a) ∼ a�(q) (4)

with the scaling exponents �(q). The variation with powers of q allows us to obtain a
linear dependence �(q) with the single HMolder exponent h(q)=d�(q)=dq= const in the
case of monofractal objects and a nonlinear function with a large number of exponents
h(q) for multifractals. Finally, the singularity spectrum D(h) is estimated by means of
the Legendre transform: D(h) = qh(q)− �(q).
The partition function Z(q; a) re2ects the scaling of large 2uctuations in data series

(strong singularities) for positive q and the scaling of small 2uctuations (weak singu-
larities) for negative q. In analogy with the DFA-technique, the values of the HMolder
exponents allow us to make conclusions about the presence of anti-correlated dynam-
ics (0¡h¡ 0:5), correlated behavior (h¿ 0:5), or about the absence of correlations
(h= 0:5) [15].

3. Scaling features of return time sequences

3.1. Coupled R9ossler oscillators

Let us start with a system of two coupled RMossler oscillators [7]:
dx1;2
dt

=−!1;2y1;2 − z1;2 + !(x2;1 − x1;2) ;

dy1;2

dt
= !1;2x1;2 + Ay1;2 ;

dz1;2
dt

= B+ z1;2(x1;2 − $) ; (5)

where the parameters A, B, and $ govern the dynamics of each subsystem, and ! is the
coupling parameter. !1 =!0 + % and !2 =!0 − % are the basic frequencies of the two
oscillators and % is the mismatch between them. In our study A=0:15, B=0:2, !=0:02,
$ = 6:8, and !0 = 1:0. System (5) demonstrates a variety of coexisting synchronous
regimes as well as diGerent types of asynchronous dynamics. A detailed analysis of
this model was performed by Postnov et al. [25]. Using partly the designations of
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Fig. 1. Scaling properties of the synchronous chaotic attractor CA (black circles) and the asynchronous
attractor CAt (white circles): (a,b) singularity spectra D(h) and HMolder exponents h(q) obtained by the
WTMM-approach; (c) root mean square 2uctuations F(n) (in double logarithmic plot) of the DFA-technique.

that work, we label the synchronous chaotic attractors as CA, and the asynchronous
chaotic regime (torus-chaos) as CAt. Strictly speaking, a set of chaotic solutions with
diGerent phase shifts exist inside the synchronization region. That is why it will be
more correctly to associate some index with CA showing to which attractor family it
relates. However, regimes of phase multistability have rather similar scaling properties
[26]. Hence, this aspect is not of major importance for the present study.
The transition through the boundary of the synchronization region (from CA to CAt)

taking place with increasing mismatch parameter % changes the structure of times when
the phase space trajectory returns to a PoincarIe section. To show this let us choose
the secant plane x2 = 0 and consider the shapes of singularity spectra D(h) calculated
from return time sequences for the two attractors (Fig. 1a). We clearly see that the
width of D(h) for the asynchronous regime CAt is signi>cantly larger than for CA
(where D(h) is represented by a single point). This means that the phase synchro-
nization of the oscillations for the considered system involves a loss of multiscality
in the return time dynamics: A complex structure of the return time sequence for the
asynchronous attractor requires a large number of HMolder exponents to characterize its
scaling properties fully (Fig. 1b, white circles). However, the dynamics of return times
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for the synchronous chaotic motion is characterized by a nearly constant value of h(q)
(Fig. 1b, black circles at h(q) ≈ 0).
As shown in our previous paper [26], the width of the singularity spectrum for diGer-

ent synchronous regimes can vary. Return time sequence can usually not be described
as a monofractal object with D(h) consisting of nearly a single point. Moreover, esti-
mation of the HMolder exponents for large numerical values of q is typically sensitive
to computational parameters like the range used for >tting �(q). That is why we shall
speak about the degree of multifractality (multiscality) rather than making conclusions
as to whether an object under study displays a mono- or a multifractal structure. By
performing an analysis of the scaling properties for various regimes in the interacting
RMossler systems we have found that this degree is signi>cantly smaller for all types
of synchronous oscillations than for the complex motions outside the synchronization
region.
Another distinction between the singularity spectra shown in Fig. 1a consists in the

increase of the HMolder exponents h(q) for the asynchronous dynamics. This indicates
a change of correlation. Such a variation can be quanti>ed by the diGerence in the
numerical values of the exponents h for q= 0 related to the maxima of D(h)-spectra.
Because the fractal dimensions D are both close to 1 for the chosen regimes if q=0, we
need to know only the HMolder exponents h(q) to characterize the location of singularity
spectrum as well as the degree of multiscality. Hence, for the aims of our work it is
enough to consider the dependence h(q) without the shape of D(h).
Correlation properties of return time sequences can also be analyzed within the

framework of the DFA-technique. In the synchronous regime (attractor CA) the depen-
dence lgF vs. lg n is described by a single scaling exponent � ≈ 2 × 10−3

(Fig. 1c, black circles). This value of � corresponds to strong anti-correlations in the
return time dynamics: the probability of alternation between large and small (compared
to the average) return times is close to 1 (this situation is typical for weak chaos devel-
oped via a period-doubling cascade). However, the asynchronous motion (CAt) cannot
be characterized by a single quantity. In an interval around lg n=2:0 the local exponent
takes on a value near 1.0 (correlated behavior, the case of 1=f-noise), i.e., we observe
a smooth sequence of return times unlike the dynamics of the synchronous regime.
In both regions of short- and long-range correlations (small and large n, respectively)
the local scaling exponents decrease. By analogy with the width of the singularity
spectrum for the WTMM-method let us introduce a measure of multiscality for the
DFA-approach. Below we shall denote the range of HMolder exponents (the width of
the D(h)-spectrum) as &h, and the range of scaling exponents of the DFA-technique as
&�, the last quantity being the diGerence between the maximal and the minimal local
values of �.
Fig. 2 clearly shows how the transition to asynchronous dynamics is diagnosed by

both approaches. For the coupled RMossler oscillators this transition is accompanied
by a signi>cant increase of the multiscality measures (&h, &� - Figs. 2a and b) and by
changes of the correlation type ( O�¡ 0:5 in the synchronous case whereas O�¿ 0:5 for
the asynchronous motions—Fig. 2a). Abrupt changes in the considered characteristics
under variation of the control parameter % mark the boundary of the synchronization
region. Rather similar results are obtained for other secant planes (x1 = 0, y1 = 0,
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Fig. 2. Scaling characteristics of the transition from the synchronous to the asynchronous dynamics that takes
place at % ≈ 0:00975: (a) mean values of scaling exponents of the DFA-technique (black circles) and the
scaling range &� (white circles) as functions of the mismatch parameter; (b) the measure of multiscality
&h; (c) HMolder exponents corresponding to maxima of the singularity spectra estimated from sequences of
return times to the secant planes x1 = 0 (black circles) and x2 = 0 (white circles).

y2=0, etc.), i.e., particular regimes of both subsystems are quanti>ed by similar scaling
characteristics. Note also, that the chaotic phase synchronization in Eq. (5) removes
diGerences between the complex motions of the interacting units: Scaling properties
become closer inside the synchronization region (Fig. 2c).

3.2. Coupled Lorenz systems

The dynamics of each RMossler oscillator is characterized by a single temporal scale (the
basic period of oscillations or the basic frequency). Let us now discuss a more complicated
case in which the motion of the individual unit displays several diGerent time scales. As
the >rst example we have chosen the model of coupled Lorenz systems [27]:

dx1;2
dt

= '(y1;2 − x1;2) + !(x2;1 − x1;2) ;

dy1;2

dt
= r1;2x1;2 − x1;2z1;2 − y1;2 ;

dz1;2
dt

= x1;2y1;2 − z1;2b ; (6)
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Fig. 3. Mean frequencies of switchings 〈fs〉 and mean frequencies of oscillations 〈fo〉 for the two interacting
subsystems as functions of the coupling parameter !. Note the initial reduction of the switching frequencies
and the initial desynchronization of the two oscillators as the coupling parameter is increased.

where '=10, r1 = 28:8, r2 = 28, and b=8=3. Each unit of Eq. (6) may be considered
as a bistable system [20] that demonstrates switchings between the states “+1” and
“−1” introduced as follows:

x̂1;2 =

{
+1; x1;2 ¿ 0 ;

−1; x1;2 ¡ 0 :
(7)

The mean switching period 〈T s〉 (or the mean frequency 〈fs〉=2*=〈T s〉) is one of the
statistical time scales that describe the dynamics of each subsystem. Another statistical
time scale is related to rotations of the phase space trajectory around one of the unstable
focus points. The corresponding mean frequency of rotations (or oscillations) is denoted
as 〈fo〉. Fig. 3 shows the behavior of these frequencies versus the coupling parameter
!. According to this >gure, model (6) demonstrates a growing of diGerence between
the frequencies 〈fs〉 and 〈fo〉 of the two subsystems with increasing ! up to the value
! ≈ 2:0, i.e., an initial desynchronization eGect is observed. This feature of the coupled
Lorenz systems was reported by Anishchenko et al. [27]. With further increase of !,
>rst a synchronization of switchings and then a synchronization of oscillations take
place.
Let us see how the diGerent entrainment forms are re2ected in the structure of the

return time series (here we use the secant planes z1 = 30 and z2 = 30). As one can see
in Fig. 4a, the scaling exponents of the DFA-approach decrease in the synchroniza-
tion region (!¿ 6). This means that with increasing ! the probability of alternation
between large and small values of the return times (anti-correlations) increases. We
suppose that the complex shape of the dependence O�(!) with “plateaus” in the regions
around ! ≈ 3–4 and !¿ 6 may be connected with the existence of the two time
scales. Fig. 4a also shows how the scaling properties of the synchronous oscillations
become closer for the two subsystems with strong coupling (!¿ 6). Moreover, the
scaling properties are close to the results for noninteracting dynamics (! = 0). In this
way, the wavelet-based technique testi>es to the complex dependence of the scaling
characteristics as functions of the coupling strength (Fig. 4b), and it demonstrates the
decreasing degree of multiscality (&h) for strong interaction.
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Besides the coupling parameter we can vary the mismatch between r1 and r2 in
Eqs. (6). According to the WTMM-approach, the locations of the singularity spectra
do not coincide for interacting subsystems outside the synchronization region, unlike
the case of synchronous motions (Fig. 5a). Again we see that phase synchronization
brings the scaling properties of the individual oscillators closer to one another. Here,
the values h(0) change rather smoothly with increasing mismatch. The minimum of the
variation of h(0) with r1=r2 corresponds to the identical case (r1=r2 = 1), characterized
by the strongest anti-correlations (Fig. 5b) in comparison with other values of r1=r2.
Obviously, by analogy with the coupled RMossler oscillators, the transition from

the asynchronous to the synchronous regime can reduce the measures of multiscal-
ity (&h; &�) as illustrated in Fig. 4b by means of the WTMM-technique. However, it
is interesting to note that entrainment in coupled Lorenz systems does not always lead
to such an eGect. In some situations, variation of the ratio r2=r1 shows that synchro-
nization of the oscillations removes the diGerences between the dynamics of individual
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oscillators and decreases the numerical values of the scaling characteristics ( O�, h(0))
without a clear reduction of the multifractality degree. We conclude that entrainment
in the coupled Lorenz model can >nd varying re2ections in the structure of the return
time series demonstrating, however, in all cases a simpler dynamics for the synchronous
motions.

3.3. Coupled nephrons

Complex oscillations with several diGerent time scales are rather typical for the
dynamics of living systems. As an example we have chosen to consider the nephron
model [21] that displays relatively fast motions related to the inherent myogenic dy-
namics of the aGerent arterioles combined with slower motions associated with a delay
in the so-called tubuloglomerular feedback that controls the diameter of the aGerent
arteriole in dependence of the ionic composition of the 2uid leaving the nephron.

3.3.1. Numerical simulation
The nephron is the functional unit of the kidney. Its main structure is discussed, for

instance, in Ref. [21]. The autoregulation of the blood 2ow to the individual nephron
may be described by the following six ordinary diGerential equations:

Ṗt = G(Pt; r); Ẋ 1 = 3(FH (Pt)− X1)=T ;

ṙ = vr; Ẋ 2 = 3(X1 − X2)=T ;

v̇r = V1;T (Pt; r; 1; X3); Ẋ 3 = 3(X3 − X3)=T : (8)

The >rst equation describes the variations of hydrostatic pressure Pt in the proximal
tubule in terms of the in- and outgoing 2uid 2ows. The nonlinear function G accounts
for the >ltration process in the glomerulus. The following two equations represent the
oscillatory dynamics associated with the arteriolar 2ow control. Here, r denotes the
radius of the active part of the aGerent blood vessel, and v is its rate of increase.
Note that the right-hand part of the equation for v depends on X3, re2ecting the
tubulo-glomerular feedback (TGF).
The remaining equations in the single-nephron model describe the delay T in the

TGF regulation. This delay arises both from the transit time of 2uid through the loop
of Henle and from the cascaded enzymatic processes that are responsible for the ad-
justment of r. The 2ow FH into the loop of Henle is proportional to the diGerence
between Pt and the pressure in the distal tubule. The feedback delay T , that typically
assumes a value of 12–18 s, will be considered the main bifurcation parameter in our
analysis. Another important parameter is the strength 1 of the feedback regulation (de-
noted � in Ref. [21]). This parameter takes a value about 12 for normotensive rats
and increases to about 18 for the so-called spontaneously hypertensive rats. For a more
detailed explanation of the model equations, control parameters, and the dynamics of
nephrons see Ref. [21].
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Measurements of the hydrostatic pressure Pt for anesthetized rats show characteristic
self-sustained oscillations with a period of 20–40 s [29], and for rats with elevated
blood pressure the oscillations tend to become chaotic [30]. Model (8) represents a
relatively accurate account of the basic physiological mechanisms responsible for the
chaotic dynamics, and over the years it has been tested and examined in many diGerent
ways.
Neighboring nephrons can in2uence each other’s blood supply either through vascu-

larly propagated electrical (or electrochemical) signals or through a direct hemodynamic
coupling arising via redistribution of the blood 2ow between the coupled nephrons. In
our mathematical model [9,31], the two interaction mechanisms are included via non-
linear functions. Here, we consider pure vascularly propagated coupling with a strength
!. Various forms of synchronous behavior in two interacting nephrons are reported in
Ref. [31].
Using the above model we can study the transition to the synchronous chaotic regime

for the fast (vr) and slow (Pt or Xj) components of the dynamics separately. Choosing
the secant planes Pt = 1:6 kPa and vr = 0 for each of two coupled subsystems we
analyze the overall dynamics of the interacting units.
Fig. 6 represents the main results for weak chaos (1 = 27:3, other parameters are

the same as in Ref. [31]). Transition to the synchronous state for fast oscillations re-
duces the degree of multiscality in the return time sequences: Asynchronous dynamics
(Fig. 6a, triangles) is obviously characterized by diGerent slopes of the dependence
lgF vs. lg n, i.e., by diGerent �-exponents for regions lg n¡ 2:5 and lg n¿ 2:5 (there-
fore, &� is large) whereas the considered dependence becomes closer to a line (&� is
reduced) for the synchronous state (Fig. 6a, circles). Here, we clearly see that diGer-
ences in the structure of the return time series are related to the region of long-range
correlations (large values of n). Therefore, these diGerences may not be quanti>ed by
the WTMM-approach (Fig. 6c) which is more appropriate as a tool for the analysis of
small scales.
According to the DFA-technique a reduction of both the degree of multiscality and

the O�-exponents at the transition to the synchronous behavior take place also for the
slow oscillations (Fig. 6b). However, the WTMM-method shows that the degree of
multiscality clearly decreases only for positive q related to the large 2uctuations in the
data series; for negative q such an eGect is not observed (Fig. 6d). Note again, that the
scaling features for the individual oscillators in the synchronous state are close, unlike
the results for asynchronous motions.
Numerical investigations for fully developed chaos (1= 28) [31] reveal other pecu-

liarities (Fig. 7). Individual units have diGerent scaling properties in the asynchronous
regime. For fast motions besides the reduction of the multiscality and the increased
probability of anti-correlated behavior, synchronization clearly brings closer the char-
acteristics of the interacting subsystems (Figs. 7a and c). The case of slow motions is
more complicated. Following Fig. 7b, the O�-exponents of the DFA-technique decrease
for only one subsystem in the synchronous state (slope of the dependence lgF vs. lg n
reduces for black circles in Fig. 7b in comparison with black triangles), for the other
subsystem even some increase of O� may be observed (Fig. 7b, white circles). Obvious
diGerences in the individual dynamics of the interacting units take place inside the
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Fig. 6. Scaling properties of the coupled nephron model in the regime of weak chaos (1=27:3): lgF vs. lg n
of the DFA-approach and HMolder exponents of the WTMM-technique for fast (a,c) and slow (b,d) motions.
Here, black symbols correspond to the >rst of the interacting subsystems and white symbols are related to
the second subsystem. Circles mark the synchronous dynamics, and triangles label the asynchronous regime.

synchronization region as well as outside this region (Fig. 7d), i.e., unlike the case of
the fast phase variables, synchronization does not remove diGerences between the slow
dynamics of the individual units. At the same time, we observe the decreasing multi-
scality for both subsystems in the synchronous motion. In other words, the transition
to the synchronous state for slow oscillations of the chosen regime increases the prob-
ability of anti-correlated dynamics of only one of the interacting units and reduces the
multiscality degree for both of them. This illustrates speci>c re2ections of the phase
synchronization phenomenon in the complex structure of return time series. We can
conclude, however, that in all the discussed examples synchronization is accompanied
by an obviously simpler structure of the characteristic scales in comparison with the
asynchronous motions.

3.3.2. Experimental results
Besides the model describing the dynamics of coupled nephrons we have analyzed

experimental data obtained at the Department of Medicine, University of Copenhagen.
Fig. 8 shows an example of the tubular pressure variations that one can observe

for adjacent nephrons in a hypertensive rat. These oscillations are quite irregular and
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Fig. 7. Scaling properties of the coupled nephron model in the regime of strong chaos (1 = 28): lgF vs.
lg n of the DFA-approach and HMolder exponents of the WTMM-technique for fast (a), (c) and slow (b), (d)
motions. The designations are the same as in Fig. 6.
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Fig. 8. Experimental data of the proximal tubular pressure for coupled nephrons in a regime of (a) syn-
chronous and (b) asynchronous chaotic dynamics.

a variety of studies have shown that they can be ascribed to a chaotic dynamics. In
spite of this complexity, however, one can observe a certain degree of synchronization
between the interacting nephrons. Figs. 8a and b illustrate examples of synchronous
and asynchronous behavior, respectively. Synchronous dynamics is typically observed
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Fig. 9. HMolder exponents of the WTMM-approach estimated from experimental recordings in the synchronous
(circles) and the asynchronous (triangles) regimes. Note how the HMolder exponents for the synchronized case
are very similar.

for nephrons that share the same interlobular artery, whereas asynchronous dynamics
is found for nephrons that derive their blood supply from diGerent blood vessels.
The results of our data analysis are given in Fig. 9. We should note that technical

problems connected with the correct extraction of return times from nonstationary data
(Fig. 8a) and a relatively short length of the time series (about 103 return times) lead
to a rather high sensitivity of the HMolder exponents to the choice of secant plane and
to the algorithmic parameters (especially for q¡ 0). That is why, in Fig. 9, we present
the dependences h(q) only for q¿ 0. Here, the scaling properties of the two interacting
units are quite close in the case of synchronous dynamics (Fig. 9, circles), and they
do not coincide for the asynchronous regime (Fig. 9, triangles). However, reduction of
the degree of multiscality does not occur.

4. Conclusions

During the last few years, multifractality (or, more generally, multiscality) in the
evolutionary dynamics of complex systems has become a topic of signi>cant interest
in many areas of science. In this paper, we studied the possibility of a multifractal
characterization of the synchronization phenomenon in two coupled chaotic oscillators.
Taking three models with diGerent dynamics, namely, coupled RMossler oscillators, cou-
pled Lorenz systems, and coupled nephrons, we analyzed how the transitions between
diGerent types of synchronous and asynchronous motions is re2ected in the structure of
characteristic temporal scales represented, for instance, via return times to a PoincarIe
section. The main results are:
Chaotic phase synchronization in the coupled RMossler systems is accompanied by

signi>cant changes of the return time series including (i) a reduction in the degree of
multiscality or even a loss of multifractality; (ii) a decrease of “smoothness” for the
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return time sequence that can be quanti>ed by a reduction of the O�-exponents (here,
a transition from correlated behavior for the asynchronous motions to anti-correlations
for the synchronous regime takes place); (iii) a removal of diGerences between the
individual dynamics of the interacting units.
Entrainment in systems with several time-scales (Lorenz or nephron models) is more

complicated. In particular, the scaling features may be diGerent for diGerent phase
variables and the re2ection of the synchronization phenomenon in the temporal scales
can vary. We may note that the three eGects observed for coupled RMossler oscillators
can also occur in the presence of several characteristic scales in the motions of the
interacting subsystems. However, we typically observe diGerent combinations of these
eGects. Sometimes, they can all be seen simultaneously. In other cases, chaotic phase
synchronization decreases the “smoothness” of the return time series and removes dif-
ferences between the individual dynamics of the coupled oscillators without a clear
reduction of the measures of multiscality. Finally, the degree of multiscality can de-
crease signi>cantly while the actual regimes of the interacting units remain diGerent.
We can conclude that the synchronization in systems of coupled chaotic oscillators with
several temporal scales can have diGerent re2ections, with the return time dynamics
involving a combination of some general eGects.
Application of the above methods to experimental data allow us to diagnose the

synchronous and asynchronous behavior of complex oscillations. This was illustrated
by means of experimental results for coupled functional units in the kidney.
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