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Abstract

In the given paper, we consider the scaling features of long letter sequences like human
writings, discretized images and discretized 3nancial data. Using several approaches we show
that the symbolic strings and time series being analyzed have a complex multiscale structure and
demonstrate di5erent scalings for large and small 6uctuations. We discuss complex phenomena
in the scaling behavior of partition functions in the case of high frequency DAX-future data.
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1. Introduction

During the last few years there has been intense discussion about the scaling fea-
tures of complex processes and natural sequences of di5erent origin termed multifractal.
Multiscale phenomena [1–8] occur in many 3elds of modern science. They take place
in biosequences [9–11] and physiological signals [12,13], in fully developed turbu-
lence [14–16] and random walks on random fractals [17,18], in cloud structure [19,20]
and Brownian motion [21], in di5usion-limited aggregates [22] and chaotic attractors
[23,24], etc.
Many time series in nature are nonstationary and inhomogeneous. Such signals have

di5erent scaling properties for di5erent subsets of the data and require often a large
number of characteristics to quantify the peculiarities of their complex structure [12].
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At present, several approaches have been developed giving an opportunity to ana-
lyze multifractal objects (see, e.g. [25]). One of the commonly used approaches is the
wavelet transform modulus maxima (WTMM) method [15,21,25–27] allowing to inves-
tigate, in practice, multiscale phenomena for any of the experimental signals including
nonstationary data. The use of the wavelet analysis referred often as the “mathemat-
ical microscope” is now an attractive tool in time series processing. WTMM-method
supposes the characterization of a time series by means of the function D(h), where h
is the HNolder exponent of some subset of the data which has the fractal dimension D
[12]. The values of h quantify the local scaling and do not coincide for inhomogeneous
processes. The function D(h) called “singularity spectrum” together with the scaling
exponents �(q) of partition functions [21] constructed from the wavelet coeOcients
provide an informative characterization of the time series being investigated (and the
same approach can also be applied to symbolic sequences).
In WTMM-method, the local singular behavior of the data is analyzed in terms

of the wavelet transform coeOcients. Another possible way to quantify the scaling
properties of time series consists in the use of di5erent variants of 6uctuation analysis
[13,28–40] and, in particular, in the use of the modi3ed root mean square analysis of
a random walk, termed detrended 6uctuation analysis (DFA) [30–40]. This method
is also appropriate to the processing of nonstationary data being an e5ective tool for
detecting the presence of long-range correlations.
Although the scaling features can be studied using di5erent algorithms, each of

the methods provides us with an additional information about the complex structure of
time series. Let us mention, for this purpose, the method of dynamic entropies [41–48].
The given approach allows to quantify how the value of conditional entropy hn scales
with the block length, i.e., how the average predictability of the state followed n former
states scales with increasing n.
In the given paper, we discuss the scaling features of objects of di5erent origin

(human writings, images, 3nancial data, etc.). The main purpose of our work is the
simultaneous application and comparison of the above mentioned approaches for par-
ticular cases, which gives the possibility to describe di5erent sides of the complex
structure of the objects being investigated. The paper is organized as follows: Section 2
brie6y describes the methods being used for analysis. The results of processing literary
texts and images are the subject of Section 3. In Section 4, we focus on the features
of the scaling behavior of 3nancial data.

2. Methods

2.1. WTMM-method

A wavelet-based multifractal formalism originally proposed in Ref. [26] can be con-
sidered as a generalization of the well-known box-counting methods to fractal signals
using wavelets instead of boxes. Since the analyzing wavelets represent well localized
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functions, they are appropriate to the processing of inhomogeneous time series. We
shall limit ourselves to describe very brie6y some details of the WTMM-algorithm. A
complete description can be found in Ref. [21].
At the 3rst step of this method, the wavelet transform of a function f(x) is per-

formed:

T [f](x0; a)=
1
a

∫ ∞

−∞
f(x) ∗

m

(
x − x0

a

)
dx ; (1)

where f(x0) is a distribution at a point x0 (for symbolic sequences one often uses
random walk displacement as f(x)),  is the wavelet mother function chosen e.g. as
follows

 (m) = (−1)m
@m

@xm

[
exp

(
−x2

2

)]
; (2)

and a is the scale parameter. As it was proved in Ref. [21], a local singular behavior
of f(x) around x= x0 can be characterized by the HNolder exponent h(x0)

T [f](x0; a) ∼ ah(x0); a → 0+ (3)

which quanti3es the “strength” of a singularity of f(x).
The second step of WTMM-algorithm assumes the building up of a partition function

Z(q; a) being the sum of the qth powers of the local maxima of |T [f](b; a)| at the
scale a. Following [21],

Z(q; a) ∼ a�(q) ; (4)

where each value of �(q) de3ned for some q is the scaling exponent characterizing
the power-law behavior of Z(q; a). The variations of powers allow to obtain a linear
function �(q) and constant value h=d�=dq in the case of monofractal objects and a
nonlinear dependence �(q) with a large number of HNolder exponents for multifractals.
Since the analyzed time series has di5erent scaling properties for di5erent subsets in the
last case, one uses the singularity spectrum D(h) to characterize statistical properties of
these subsets. This function denotes that some subset of points x, for which h(x)= h,
has the Hausdor5 dimension D [21]. The relationship between the main quantities of
the WTMM-method is de3ned by the Legendre transform:

D(h)= qh− �(q) : (5)

2.2. Fluctuation analysis of sequences

The scaling features of time series are studied often by means of di5erent variants of
6uctuation analysis [13,28–37]. Peng et al. [28] proposed a useful approach allowing
to characterize the scale invariant long-range correlations in symbolic sequences, for
example, in DNA. According to this approach, a nucleotide chain is transformed 3rst
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into a binary sequence u(i), where u(i)= + 1 if pyrimidine occurs at position i and
u(i)=−1 if purine occurs at i. After this transformation, the running sum called fractal
landscape or DNA walk [28], is calculated: y(l)=

∑l
i=1 u(i). An important statistical

quantity characterizing this walk is the root mean square 6uctuation F(l) about the
average of the displacement de3ned as proposed in Ref. [28]. From the viewpoint of
detection of the presence of long-range correlation, the behavior of F(l) for l�1 is
the focus of interest.
An analysis of 6uctuations is not restricted by the consideration of binary sequences

only. Let us discuss the generalization of the technique [28] on the case of compo-
sitions (for example, texts consisting of many di5erent symbols). This generalization
has been considered in Ref. [46] and was based on the method [28] using the invariant
representation proposed by Voss [49]. The given procedure consists in the following:
Instead of the original string consisting of � di5erent symbols, we generate � strings
on the binary alphabet (0,1) (�=32 for texts). In the 3rst string, we place a “1” on
all positions where there is an “a” in the original text and a “0” on all other positions.
The same procedure is also carried out for the remaining symbols. Then we generate
random walk processes corresponding to these strings moving one step upwards for
any “1” and remaining on the same level for any “0”. The resulting move over a dis-
tance l is called y(k; l), where k denotes the symbol. Then by de3ning a �-dimensional
vector space considering y(k; l) as the component k of the state vector at the (discrete)
“time” l we can map the text to a trajectory. Any position in the text corresponds to
a random vector y(l) in the state space. The mean-square displacement for symbol k
is determined as

F2(k; l)= 〈y2(k; l)〉 − (〈y(k; l)〉)2 ; (6)

where the brackets denote averaging over all the initial positions. It is expected that
F(k; l) follows a power law

F(k; l) ∼ l�(k) ; (7)

where �(k) is the scaling exponent for symbol k. Here, �(k)= 0:5 for a normal random
walk and �(k) �=0:5 at the presence of correlations. (Alternatively, we can consider a
power-law dependence on l for F2(k; l) [46].) Besides the individual exponents for the
letters, it is possible to estimate even an averaged exponent � for the state space.
Instead of speaking about random walks we can reformulate the given problem in

another language, in terms of the statistical-mechanical theory of 6uctuations of particle
numbers and compositions. Let us consider a text with the total length L. Then the
total number of letters is N =L and the density is equal to “1”. However, the density
of di5erent symbols may 6uctuate along the string. In Ref. [46], for example, the 6uc-
tuating local density of blanks in “Moby Dick” has been considered and the existence
of rather long wave 6uctuations has been pointed out. The research [46] considered
the averaged over windows of length 4000 local frequency of the blanks (and other
letters) in the text of “Moby Dick” in dependence on the position along the text. The
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original symbolic string shows a large-scale structure extending over many windows.
This re6ects the fact that in some parts of the texts we have many short words, e.g.
in conversations (yielding the peaks of the space frequency), and in others we have
more long words, e.g. in descriptions and in philosophical considerations (yielding the
minima of the space frequency). The shuQed text shows a much weaker nonuniformity
of symbols; the lower the shuQing level, the larger is the uniformity. More uniformity
means less 6uctuations and more similarity to a Bernoulli sequence. For the case
of DNA-sequences no analogies of pages, chapters etc. are known. Nevertheless, the
reaction on shuQing is similar to those of the texts.
In order to quantify these 3ndings let us de3ne the number of letters of the kind k

inside a substring of length l by N (k; l). In the limit l → ∞ we get the average density
n(k)= liml→∞ N (k; l)=l. Since we have � di5erent symbols, we obtain in this way a
�-dimensional composition space. Let us now consider the 6uctuations of N (k; l) as a
function of l. We expect that N (k; l) 6uctuates around the mean value 〈N (k)〉= ln(k).
Further, we assume that the mean square 6uctuations scale with certain power of the
mean (particle) numbers

〈[N (k; l)− 〈N (k)〉]2〉=const〈N (k)〉2�k : (8)

The exponent �k is called the characteristic root mean square 6uctuation exponent. In
an analog we consider the sum of the mean square 6uctuations de3ning an exponent
� by

√∑
〈[N (k; l)− 〈N (k)〉]2〉=const l� : (9)

One can easily observe that the above de3nitions give the same numbers for the
�-coeOcient as the mapping to a random walk in a �-dimensional space. In this way
we have demonstrated the close connection to the concept of the 6uctuation theory of
particle numbers.

2.3. DFA-algorithm

The approach [28] and its generalizations cannot be applied reliably to inhomo-
geneous sequences (or time series) since the presence of nonstationarity a5ects the
results of an analysis of statistical 6uctuations. To take into account such a problem, a
new method, termed detrended 6uctuation analysis, has been proposed [30–37]. Like
wavelets, DFA-technique gives the possibility to study nonstationary data. At present,
it has been successfully applied to characterize the scaling properties in the processes
of di5erent origin, e.g. in physiological signals [13,30,39], DNA sequences [31–35],
meteorological time series [35,36], etc. [37,38,40].
The main idea of the method consists in the following. The time series a(i) being

investigated is 3rst integrated to obtain the dependence y(k)=
∑k

i=1 [a(i)−aave], where
aave is the mean value and is next divided into boxes of length n. The local trend yn(k)
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estimated via least-squares 3tting is removed from each box (using as a rule a linear
dependence although polynomials may be also appropriate). After such procedures the
root-mean-square 6uctuations of the analyzed time series have the form [30]:

F(n)=

√√√√ 1
N

N∑
k=1

[y(k)− yn(k)]2 (10)

where N is the total number of points.
At the presence of scaling in time series, the dependence lg(F) vs. lg(n) has a linear

segment with the slope �, called scaling exponent for 6uctuations F(n). Following
[50–52], there exists a relationship between � and the scaling exponents for power
spectrum and correlation function. In the absence of local trend both approaches [28,30]
lead to the same value of �.
Unlike WTMM-method, the discussed technique allows to obtain usually only one

exponent which is important for the analysis of monofractal objects. As it was already
mentioned, multifractal signals require a large number of quantities to characterize their
complex structure since the scaling properties are di5erent for large (positive q in Eq.
(4)) and for small (negative q) 6uctuations.
Although DFA-algorithm is simpler and measures a single dependence lg(F) vs.

lg(n), its local slopes may not coincide for time series with multiscale structure. This
allows us to quantify the features of the power-law behavior for short and for long
scales [31]. That is why we can consider DFA-method as a potential tool in the study of
multiscale phenomena as well. Note, that both the above discussed methods (WTMM
and DFA) lead to the values h≈ �≈ 0:5 for uncorrelated processes (other values of
these quantities mark di5erent types of power-law correlations) [12,30].

3. Applications to human writings and images

Starting with Shannon’s paper [53] human writings are a subject of many studies.
One of the attractive questions being discussed in the last few years is the origin of
long-range correlations in texts. In particular, the paper [54] considers the problem
whether the scaling behavior is based on correlations below the sentence level or not.
In Ref. [55] it was claimed that the origin of the long-range correlations in a text is
in relation with the ideas expressed by an author. The work [46] has showed that the
long correlations re6ected in scaling features for power spectrum or other measures are
connected with large-scale structures beyond the sentence level.
The presence of long-range order in human writings can be quanti3ed using di5er-

ent approaches. Aiming to discuss the features of the scaling behavior for texts, we
shall mention some results of recent studies for the book “Moby Dick” by Melville
(N ≈ 1; 170; 000 letters). As it was shown in Ref. [46], at least in a reasonable approx-
imation the scaling of the entropy against the word length is given for large n by root
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laws of the type

hn =
c1√
n
+ c2 : (11)

A power-law decay of hn allows to state the e5ect of a rather long memory tail.
Calculation of the power spectrum S(f) for “Moby Dick” performed in Ref. [47]

has shown that the given dependence reminds in double-logarithmic plot (log(S) vs.
log(f)), a piecewise linear behavior (i.e., has di5erent scaling properties for di5erent
ranges of frequencies) which is typical for multifractal structures.
Let us now consider this question on the basis of other approaches. Since the ap-

plication of di5erent numerical recipes to symbolic strings requires their initial trans-
formation into series of numbers, 3rst, we need to discuss how such a transformation
can be realized. One often uses random walk models for this purpose. The given rep-
resentation of symbolic strings is rather typical for biosequences. In Ref. [46], random
walks have been successfully applied to study the e5ects of long correlations in human
writings (e.g. in “Moby Dick”). The estimation of scaling exponent performed in this
paper has led to the value �≈ 0:62 for root mean square displacement (or ≈ 1:24 for
mean square 6uctuations).
Another way of transforming a symbolic string into a series of numbers (accepted

in neurodynamics or cardiology) consists in the analysis of so called “point processes”
(i.e., of the processes where the information carriers are time intervals between some
“events” [56]). We can consider, for example, the appearance of letter “a” in text
(any other letter or combination of symbols) as such an “event”. A series of integer
numbers being the intervals between successively appearing “events” can be studied
using standard methods of time series analysis. We have investigated “point processes”
corresponding to di5erent letters in “Moby Dick” and other texts (e.g. tragedies by
Shakespeare, bible, etc.) in order to analyze the scaling features in literary English.
Since the obtained results are qualitatively the same, we shall limit ourselves to describe
the typical scaling behavior using Melville’s book.
As it was mentioned in the previous section, the DFA-algorithm is applied as a rule

to extract a single scaling exponent � from the experimental data. But, in the presence
of a multiscale structure, the local slopes of log(F) vs. log(n) do not coincide for large
and small scales (Fig. 1). We can see also from this 3gure that a shuQing of original
text on the sentence level destroys long correlations and keeps only the short-range
ones leading to the multiscale structure for shuQed data as well. The shuQing has
been performed as follows: First, we generated a series of normally distributed random
numbers r(j); j=1; : : : ; M , where M is the number of sentences. Next, the series r(j)
has been rewritten in the order of increasing values, so we have obtained the random
sequence of indexes. The sentences in the original text have been shuQed accord-
ing to this sequence and we have used such a shuQing procedure further for words,
letters, etc.
The pictures similar to Fig. 1 have been obtained after averaging the results of

processing di5erent “event” series (using DFA-method and taking a large number of
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Fig. 1. DFA-analysis of the book “Moby Dick” by Melville: (a) The dependence lg(F) vs. lg(n) for the
original text (1) and after shuQing on the sentence level (2). “Event” series has been recorded as intervals
between the letters combination “th”; (b) Local scaling exponents for the original (black circles) and for the
shuQed text (white circles).

letter combinations). The presence of multiscaling in literary English can be tested also
by WTMM-algorithm. Fig. 2 shows the singularity spectra obtained for point processes
(recorded as intervals between the letters combination “th”) in the original text and
after shuQing on the word level. As  (m) we have chosen WAVE-wavelet (m=1)
and MHAT-wavelet (m=2). We can see from the given pictures that the original text
can be really considered in the frame of multifractal concept since the dependence
D(h) does not consist of a single point. The shuQing on the word level destroys long
correlations (the values of HNolder exponents are close to 0.5 for positive q), however,
short-range correlations below the word level are retained. As a consequence, h¿ 0:5
for negative q.
So, we can see that human writings are an example of information carriers with

multiscale structures. Processing di5erent texts (or di5erent “event” series) change the
values of HNolder exponents and scaling exponents for 6uctuations F(n), but the results
will be qualitatively similar. Note that in the analogy with human writings we can study
di5erent images using the same approaches. For example, Fig. 3 shows the singularity
spectrum obtained for the photo of Saratov conservatory (black circles). White circles
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Fig. 2. Multifractal analysis of the book “Moby Dick”: (a) The dependence D(h) for “event” series recorded
as intervals between the letters combination “th” in the original text (black circles) and in the text shuQed
on the word level (white circles). As  (m) we have chosen WAVE-wavelet (m=1); (b) The same as in (a)
for MHAT-wavelet (m=2).

Fig. 3. Multifractal analysis of images: The singularity spectrum (black circles) for the photo of Saratov
conservatory. This photo was transformed into series of numbers (from 0 to 255) being tints of the color
of black-and-white image. Unlike 2D-method [19,20], we have restricted ourselves for the simplest case
(1D-method). For comparison, the results for a fragment of Leonardo picture “Virgin of the Rocks” are
presented (white circles).
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in Fig. 3 mark the corresponding results for a fragment of the well-known picture
“Virgin of the Rocks” by Leonardo showing that the presence of multiscale structure
can be quanti3ed for paintings as well.

4. Applications to �nancial data

The peculiarity of statistical methods is that they 3nd successful applications at the
analysis of objects of di5erent origin. Using the same approaches we can study literary
texts, biosequences, physical processes, mathematical functions, etc. In this section,
we would like to consider a rather speci3c type of experimental data demonstrating
complex scaling behavior, namely, 3nancial time series.
Our experiments have been performed for daily stock index data: Dow Jones (DJ)

1900–2000 St (27,044 trading days) and DAX-future data recorded each 10 s during
60 trading days. To remove the trend from the time series (which grows exponentially
for DJ-data) one often uses logarithmic price changes

xt = ln(St)− ln(St−1) ; (12)

where St−1 is the last measurement of the stock index, St is the new value. Next step
for entropy analysis consists in transformation of real numbers xt into a symbolic string
At using alphabet of length �. In Ref. [57], this transformation has been performed as
follows: �=3 and At =0; xt ¡− 0:0025 (strong decrease in the stock value), At =2;
xt ¿ 0:0034 (strong increase), At =1 (intermediate).
A direct application of the entropy concept to DJ-data in order to analyze the scaling

features is diOcult in connection with a suOciently short length of time series, which
limits the abilities in considering large blocks due to the increasing of statistical errors
with n [48].
At the same time, this concept can quantify the local predictability in time series.

As it was shown in Ref. [57], although the averaged predictability is close to zero,
there exist certain patterns of stock movements A1 : : : An behind which the local pre-
dictability reaches 8%. This is a notable value for the stock market, which is usually
purely random. Moreover, higher local predictabilities coincide with larger levels of
signi3cance [57]. Fig. 4a shows that in a time window averaged local uncertainty has
certain periods of higher averaged predictabilities which were relatively small in the
last few decades (after the beginning of computerized trading).
Other approaches being discussed above are less sensitive to the length of time series.

Both, DFA- and WTMM-methods show that the DJ stock index data demonstrate rather
uncorrelated behavior (HNolder exponents h and scaling exponents for 6uctuations � are
close to 0.5). We can therefore conclude that processing 3nancial data for short time
scales may be only potentially interesting. Note also that the properties of DJ-data are
clearly di5erent for the 3rst few decades of 20th century and for the last few decades,
which can be illustrated by WTMM-approach: We see the presence of correlations in



320 A.N. Pavlov et al. / Physica A 300 (2001) 310–324

Fig. 4. Analysis of DJ-data. (a) Entropy approach: moving exponential average of the local uncertainty h5
with an half-life period of 5 years for daily data 1900–2000; (b) The results of DFA-algorithm: local slopes
of the dependencies lg(F) vs. lg(n); (c) Multifractal analysis: the values of HNolder exponents vs. q at the
variation of the range of scales used for 3tting; (d) Singularity spectrum for the 3rst 8000 days of DJ-data
(black circles) and for the last 8000 days (white circles).
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time series for the 3rst 8000 days (Fig. 4d, black circles) and the behavior which is
close to an uncorrelated one during the last 8000 days (Fig. 4d, white circles).
Now we turn to DAX-future data. As it was already mentioned, the original tick-by-

tick data were resampled to equidistant times of an interval of 10 s during 60 trading
days. Thus, we have about 2500 measurements per day. This is small enough to con-
sider scaling properties for dynamic entropy [58]. Further, we shall discuss the results
obtained by means of other algorithms. Again, our analysis has shown that the behav-
ior of 3nancial data being discussed is close to an uncorrelated one (h≈ �≈ 0:5). For
some days, HNolder exponents and scaling exponents for 6uctuations are clearly di5erent
from 0:5. However, this is connected perhaps with a nonstationarity of xt during these
days (something similar to the switching process) while the corresponding results of
the given computations need further analysis.
Fig. 5 presents the results obtained for typical days when the analyzed time series

can be considered as stationary. The scaling exponent � is close to 0:5 in a width range
of scales (Fig. 5a).
WTMM-algorithm maybe a more appropriate tool to consider short scales. We can

see from Fig. 5b that DAX-future data show nontrivial scaling behavior for the partition
function constructed from wavelet coeOcients. The dependence ln(Z(q; a)) vs. ln(a) is
not linear (as it is expected usually) and we have piecewise linear segments for neg-
ative values of q re6ecting the features of the scaling behavior for small 6uctuations.
Fitting by linear functions in a wide range of scales can lead this case to the com-
plex dependence of singularity spectrum D(h) (Fig. 5c) being typical for multifractal
structures. (The problems which arise in some cases as to how to interpret the results
obtained using multifractal concept are discussed e.g. in Ref. [59].) Fittings performed
separately for two linear segments of the dependence ln(Z) vs. ln(a) lead to the HNolder
exponents h≈ 0:5 for large scales and h≈ 0 for ln(a)6 1 (where the scale a is taken
in the number of measurements, i.e., in the number of points with the time interval
10 s). That is why we can conclude that the chance of prediction for the analyzed data
exists perhaps only for very short time intervals (up to 20–30 s). When considering
other days we can obtain slightly di5erent results for the predictability horizon showing
however the complex scaling behavior for wavelet coeOcients (and as a consequence,
the complex behavior for partition functions).

5. Conclusions

In this work, several algorithms have been used to quantify the scaling features in
the long sequences like human writings and 3nancial data. The simultaneous applica-
tion of di5erent approaches allowed us to describe the details of the complex structure
of the analyzed symbolic sequences and time series. It was shown that literary English
can be studied in the frames of multifractal concept and the scaling properties of the
given symbolic strings do not coincide for short and for long scales demonstrating
the inhomogeneity of texts on di5erent levels. This was testi3ed by both, DFA- and
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Fig. 5. Analysis of DAX-future data (typical results): (a) Local scaling exponents for logarithmic price
changes xt (black circles) and for shuQed time series (white circles); (b) The behavior of partition function
for negative values of q; (c) The singularity spectrum obtained when 3tting is performed over a full-range
of scales.

WTMM-algorithms. The structural origin of the observed phenomena may be under-
stood on the basis of shuQing experiments. For example, the shuQing of sentences
destroys long correlations beyond the sentence level and we expect to obtain di5erent
scaling behaviors for large and small 6uctuations. Less well understood is the origin
of the observed inhomogeneities, and this question needs further research.
We have also chosen an object showing other types of scaling behavior, namely 3-

nancial time series and are certain that the given data have non-trivial scaling properties
for partition function allowing to obtain di5erent results for singularity spectrum when
considering di5erent ranges of a. Although the shape of singularity spectrum (Fig. 5c)
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looks like a continuous function, we suppose that it may be connected with the short-
comings of standard multifractal analysis methods when the object to which they are
applied is not multifractal. It is known [59], that the function D(h) may have spurious
points representing top envelope of true spectrum. From the piecewise linear structure
of the partition function we expect to obtain di5erent values of �(q) for large and short
scales. Fittings performed separately for each linear segment of ln(Z) vs. ln(a) verify
that the scaling properties of DAX-future data are characterized more probably by two
quantities (h≈ 0:5 and h≈ 0) instead of a continuous dependence D(h).
The above mentioned gives the possibility to conclude that the objects being con-

sidered have a complex structure indeed and this structure is perhaps more complex
than it is often supposed.
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