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Reconstruction of dynamical and geometrical properties of chaotic attractors
from threshold-crossing interspike intervals
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We reconstruct the largest Lyapunov exponent and fractal dimension of a chaotic attractor using threshold-
crossing interspike intervals alone. We show that in certain cases one may reconstruct from this data a set
looking very similar to the initial attractor. We also give an explanation of this possibility based on the concept
of instantaneous frequency51063-651X%98)51207-X|

PACS numbd(s): 05.45+b

The problem of extracting information about a dynamicalconstruct the geometrical properties of original attractor us-
system from experimental data is of great importance for allng the latter method for obtaining spike train data. However,
those who study the systems of natural origin that may bep to now it seemed to be impossible to reconstruct the ini-
thought of as black boxes. The traditional way of obtainingtial attractor using threshold-crossing interspike intervals
experimental data is to fix the sampling stepand store the alone[9].
values of some state variabdét) corresponding to the time ~ The goal of the present Rapid Communication is to dem-
moments At. The fundamental workl] state that the delay Onstrate the possibility to reconstruct a set being very similar
method applied to such time series often allows one to reto initial chaotic attractor as well as its dimension and largest
construct a set being topologically equivalent to the initialLyapunov exponent using only the sequences of threshold-
system attractor. On the base of these works a series of metfrossing time intervald; or the time intervals between the
ods have been developed allowing one to evaluate attractGticcessive maximér minima of initial time series. We
dimension[2] and the largest Lyapunov characteristic expo-show that the results are qualitatively the same for both
nent(LCE) [3], to detect unstable equilibrium poir{t4] and  cases.
unstable periodic orbitSS], and’ fina”y' to create in some To reveal the meaning of threshold-crossing ISI consider
cases global mode([$] or different predictor$7]. the concept of instantaneous frequency. In R&g] three

Another way of getting experimental data which is oftenways of how to introduce the phase of chaotic oscillations
preferred by biologists is to generate spike-train d&p  are described. The first two ways are connected with the
One imposes a certain condition on the value of state varieXistence of a projection of system’s attractor on the plane
able s(t) and records the interspike intervalSl) T; be-  (X,y) reminding a smeared limit cycle. If this projection ex-
tween the time moments for which the condition is fulfilled. ists then one is able to introduce the Poincseeant so that
There are two general methods for recording spike-train datdt would pass through an equilibrium point of the system
The first one is to generate a spike whet) crosses some around which the motion occurs. According to first defi-
threshold leveld in one direction, and measure Ifds an  nition, the phase is defined via the time moments of trajec-
alternative, one may measure the time intervals between tHery’s crossings of the secant surfageas follows:
local maxima ofs(t)] [Fig. 1(a)]. The values ofT; can be

treated as the times of trajectory return to the surface defined _ t—t,
by the condition imposed to the initia(t). [The condition (p'(t)=27rt_ — +2mi,  st<tiyg. 1)
s(t)= 6 means the definition of a plane in the phase space, R

while the conditions(t) =0, s(t), being a realizatiom;(t) of

a dynamical systendx/dt=f(X), means the definition of a TheT se'cond definitiompergtgs with the above mentioned

surface f;(X)=0.]Using this data one is able to compute Projection, and the phase is introduced as

probability density of return timelor the interspike interval

histogram(ISIH)] and its different functionals, e.g., mean eP=arctary/x). 2)

value, variance, entropy, etc. Until recently the meaning of

the return times was not quite clear. In the wofRs10] it . o

was stated that in certain cases the time delay plot of returhhe two phases' and ¢ do not coincide, and only the

times can be a rough analogy of Poincanap, the latter Mean frequency defined as the averagdef/dt over large

conclusion being proved by computation of the correspondtime coincides with z/T, whereT is the average return

ing correlation dimensions. time. Thethlrd definition is gl\_/en.by the genergl approach
The second method to generate spike train data is the ud#hich is based on the analytic signal concept introduced by

of integrate-and-fire model or other neuron modgld]  Gabor[13]. The analytic signak(t) is a complex function of

when the S| are generated recursively py*'s(t)dt=4, M€ constructed as
I

where ¢ is a fixed thresholdi; are the time moments when o
spikes occur. The workf9] establish the possibility to re- z(t)=s(t) +is"(t)=A(t)e'¢ OV, (3)
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wheres(t) is Hilbert transform of initial signa$(t), 17
1 (= s(7) s
st(t)= —Pf dr. (4
T J_ut—1T
-12

P means that the integral is taken in the sense of Cauchy
principal value. Instantaneous amplitudgt) and phase
oM(t) of s(t) are uniquely defined from Ed4), as well as
instantaneous frequency being the derivativepB{t).

Note that consideration of instantaneous amplitude and
phase(or frequency instead ofs ands" means substitution
of variables which is smooth everywhere except the origin.
The latter is direct definition of topological equivalence
which is valid if the trajectory does not cross the origin.
Therefore, one could use either instantaneous amplitude or
frequency to reconstruct the original attractor. Thus, we can

1.7

unambiguously pass to the phase plang, o), w"(t) 10,4 t 100
=H(t), treatw"(t) as an independent phase variable and . _ } , ,
use it to reconstruct the original attractor. FIG. 1. (a) First coordinate of Resler system in the regime of

weak chaosib) time dependence of instantaneous frequenty
obtained from the Hilbert transform and the result of averaging
{(w"); (c) the pointsw'(t;) connected by the solid curve and the
values{w™)(t;) connected by the dashed line. The comments are
given in the text.

Now we turn to experimental data measured as time in
tervals between intersections by a realizatgfh) of some
threshold leveld. Suppose that the plane defined (%)
= ¢ can be treated as Poincasecant. Then we can use the
first method to introduce the instantaneous phglsand fre-
guencyw', i.e., we can attribute to each time momeénthe ) )
value of w'(t;)=2m/T;. The valuesw'(t;) can be qualita- Iev_eI qnd lead _the smoo_th curve through all its points by
tively treated as the points of coordinate reconstructed fron¥Sing interpolation techniqugFig. 1(c)]. Thus, a system’s
w"(t) by means of an averaging method with varying win- co_ordl_nate is reconstructed fror_n thre_shold-crossmg inter-
dow and known only at discrete time mometytsWe do not spike intervals. The phase po_rtralt pbtamed t_Jy d_elay method
know for sure how the averaged instantaneous frequendijom the reconstructed coordinate is shown in Fig) 2
»"(t) behaves itself between the time momentsbut we We only see that it is obwougly chaouc. Another way of
can suppose that it is not constant in real chaotic systems arf#oring the values off; as the time intervals between the
varies smoothly. That is why the natural step is to connectocal maxima lead to a very similar phase portrait. The box-
the existing points with some smooth curve to get an idea ofounting algorithm2] was used to compute fractal dimen-
how the real frequency averaged over a moving window withSions of the initial Resler attractor and the sets reconstructed
varying length would behave, at least qualitatively. By all
means, we would never obtain exactly the true dependence,

but we hope that the time series obtained in such a way could ®
in certain cases reproduce qualitatively the behavior of one

of system’s coordinates and thus allow us to reconstruct ap-

proximately the view of original attractor and its dynamical

and geometrical properties. 5

As an example, consider the famoussRier systenjl4]

X=—-y—z, y=x+ay, z=b+(x—0c)z (5) wH
in the regime of weak chaas=0.15,b=0.2, c=6.5. For 0.8
this regime phase may be introduced by all the three methods 4 A 12
[12]. Instantaneous frequenay” versust is shown in Fig. 1.1
1(b). Fast variations of»"(t) can be smoothed by means of .
averaging over the quasiperigsee bold line in Fig. )]. In =
Fig. 1(c) stars mark the point&'(t;) and circles mark the 3
values(w™)(t))=1/T, [ *1o"(t)dt. The stars are connected 1.0 :
i 1.0 ol (t+t) 1.1

by a smooth curve, and the circles by the pieces of straight
line. Note that the behavior of these two dependences is Very rig 2. phase portraits on the plari@s (x,x"), wherex is the
similar. The phase portrait reconstructed by means of Hilberys coordinate of the systes), x* is Hilbert transform ofx; (b)
transform is shown in Fig.(@). The same phase portrait in (A M), whereA andw" are the instantaneous amplitude and fre-
coordinates A, »") is given in Fig. Zb). Next, we build the  quency, respectivelytc) [w'(t), o (t+7)], wherew!(t) is a time
dependence'(t;) =2=/T; for the values ofl; measured as dependence obtained by interpolatithe comments are given in
time intervals between the coordinatét) crossings of zero the tex).
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FIG. 3. (a) Largest Lyapunov exponent calculated francoor- FIG. 4. (a) Action potential coordinate of Hodgkin-Huxley sys-

dinate of the systen5) vs c; (o) largest Lyapunov exponent cal- tem (the dashed line indicates the threshold I&véd) interpolated
culated fromw'(t) of the syster(5) vsc; (c) plot for estimation of  time dependence ob'; (c) plot for estimation of the Hausdorff
Hausdorff dimensionM is the number of nonempty boxesis the  dimension. The solid line is obtained from the action potential co-
size of box. The solid line is obtained from coordinate of the ordinate of Hodgkin-Huxley system, and the dashed line is obtained
system(5), the dashed line is obtained from zero-crossing ISI, andfrom the realization in(b).

the dotted line is obtained from the time intervals between succes-

sive maxima oi. kHz [16]. The equations were numerically integrated to ob-

tain a realization shown in Fig.(d. A threshold level was
[htroduced as shown in the figure, and time intervals between
crossings of this level were stored. The same procedure of
interpolation was performddrig. 4b)] and the value of larg-

%st LCE was evaluated from the initial realization(
C~0.025) and the reconstructed ong £0.03). The plots for
computation of fractal dimension were compared for these
wo realizations[Fig. 4(c)], and although the existence of
near segments is doubtful they go in parallel. This result

from the dependences obtained by means of interpolatio
from the ISI measured by two ways. The plots of ol
versus log, €, whereM is the number of honempty boxes
ande is the size of a box, are given in Fig(c3. We see that
the linear segments of all three graphs are parallel to ea
other. Now vary the parameterof Rossler systent?) in the
range[5;12] and compute the largest LCE from the coordi-
natex(t) of this system and from the dependence obtaine

by means of interpolation technique from threShOId'CrOSSir.‘Qestifies that in spite of the fact that the condition under

in_terspike intervals. The corresponding plots are given "Myhich the phase can be defined in the first way is violated,
Figs. 38 and 3b) and show the remarkable coincidence c’fthere is an opportunity to obtain a qualitative evaluation of

quantitative values of Lyapunov exponents in the WhOIethe value of fractal dimension and largest Lyapunov expo-

range of parameter values. nent. With this, the phase portrait obtained from the recon-

th | Iy K ot the i Ut at Atructed realization does not remind the initial one at all.
€ values ok areé known not a ne Ime momertjsout & We state that threshold-crossing interspike intervals are
the time momentsT whereT=1/nZ;_,T; being the average ¢nough to reconstruct fractal dimension and largest

return time. Namely, the computed values of dimension andlyapunov exponent of a chaotic attractor of at least saddle-
largest Lyapunov exponent preserve under this operation. toc,s type, and also to obtain a set looking similar to the

Usually the biologists introduce threshold level so that itoriginal attractor. This result allows one to apply the algo-

would allow one to capture only global temporal scales Ofijihms for global reconstruction and prediction to the time
the system, as in Fig.(4. The secant plane defined by such ggries obtained in such a way from spike train data measured
a way is not a Poincargecant and the definition of phase via o gifferent systems. The suggested technique of interpo-
the times between crossings of this level appears to be n¢&iion may be disputable, but it demonstrated its workability
strict comparing t(_) the first definition of phase. It is obvious 5,4 allowed us to use the standard algorithms for time series
that the timesT; introduced for such level are unable t0 5pn41ysis without any modifications. The presented method
contain detailed information about the system’s dynamicsy;ijens greatly the abilities of those who use only threshold-
We shall further show that in spite of this fact one is able to¢ossing spike train data to study real systems of different
extract qualitative information about the dynamical and 9€0gyrigin, including biological ones.
metrical properties of underlying attractor.

Consider the Hodgkin-Huxley system describing the neu- The authors thank J. Kurths, M. Rosenblum, and A. Pik-
ron activity [15]. To obtain chaotic regime we add periodic ovsky for helpful discussions. The work was partly sup-
current with the amplitude &4A/cm? and the frequency 0.13 ported by INTAS Grant No. INTAS 96-0305.
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