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Reconstruction of dynamical and geometrical properties of chaotic attractors
from threshold-crossing interspike intervals

Natalia B. Janson, Alexey N. Pavlov, Alexander B. Neiman, and Vadim S. Anishchenko
Nonlinear Dynamics Laboratory, Department of Physics, Saratov State University, Astrakhanskaya St. 83, 410026, Saratov, R

~Received 31 March 1998!

We reconstruct the largest Lyapunov exponent and fractal dimension of a chaotic attractor using threshold-
crossing interspike intervals alone. We show that in certain cases one may reconstruct from this data a set
looking very similar to the initial attractor. We also give an explanation of this possibility based on the concept
of instantaneous frequency.@S1063-651X~98!51207-X#

PACS number~s!: 05.45.1b
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The problem of extracting information about a dynamic
system from experimental data is of great importance for
those who study the systems of natural origin that may
thought of as black boxes. The traditional way of obtaini
experimental data is to fix the sampling stepDt and store the
values of some state variables(t) corresponding to the time
momentsiDt. The fundamental works@1# state that the delay
method applied to such time series often allows one to
construct a set being topologically equivalent to the init
system attractor. On the base of these works a series of m
ods have been developed allowing one to evaluate attra
dimension@2# and the largest Lyapunov characteristic exp
nent~LCE! @3#, to detect unstable equilibrium points@4# and
unstable periodic orbits@5#, and, finally, to create in som
cases global models@6# or different predictors@7#.

Another way of getting experimental data which is oft
preferred by biologists is to generate spike-train data@8#.
One imposes a certain condition on the value of state v
able s(t) and records the interspike intervals~ISI! Ti be-
tween the time moments for which the condition is fulfille
There are two general methods for recording spike-train d
The first one is to generate a spike whens(t) crosses some
threshold levelu in one direction, and measure ISI@as an
alternative, one may measure the time intervals between
local maxima ofs(t)# @Fig. 1~a!#. The values ofTi can be
treated as the times of trajectory return to the surface defi
by the condition imposed to the initials(t). @The condition
s(t)5u means the definition of a plane in the phase spa
while the conditionṡ(t)50, s(t), being a realizationxj (t) of
a dynamical systemdxW /dt5 fW(xW ), means the definition of a
surface f j (xW )50.#Using this data one is able to compu
probability density of return times@or the interspike interva
histogram~ISIH!# and its different functionals, e.g., mea
value, variance, entropy, etc. Until recently the meaning
the return times was not quite clear. In the works@9,10# it
was stated that in certain cases the time delay plot of re
times can be a rough analogy of Poincare` map, the latter
conclusion being proved by computation of the correspo
ing correlation dimensions.

The second method to generate spike train data is the
of integrate-and-fire model or other neuron models@11#
when the ISI are generated recursively by* t i

t i 11s(t)dt5u,

whereu is a fixed threshold,t i are the time moments whe
spikes occur. The works@9# establish the possibility to re
PRE 581063-651X/98/58~1!/4~4!/$15.00
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construct the geometrical properties of original attractor
ing the latter method for obtaining spike train data. Howev
up to now it seemed to be impossible to reconstruct the
tial attractor using threshold-crossing interspike interv
alone@9#.

The goal of the present Rapid Communication is to de
onstrate the possibility to reconstruct a set being very sim
to initial chaotic attractor as well as its dimension and larg
Lyapunov exponent using only the sequences of thresh
crossing time intervalsTi or the time intervals between th
successive maxima~or minima! of initial time series. We
show that the results are qualitatively the same for b
cases.

To reveal the meaning of threshold-crossing ISI consi
the concept of instantaneous frequency. In Ref.@12# three
ways of how to introduce the phase of chaotic oscillatio
are described. The first two ways are connected with
existence of a projection of system’s attractor on the pla
(x,y) reminding a smeared limit cycle. If this projection e
ists then one is able to introduce the Poincare` secant so that
it would pass through an equilibrium point of the syste
around which the motion occurs. According to thefirst defi-
nition, the phase is defined via the time moments of traj
tory’s crossings of the secant surfacet i as follows:

w i~ t !52p
t2t i

t i 112t i
12p i , t i<t,t i 11 . ~1!

The second definitionoperates with the above mentione
projection, and the phase is introduced as

wp5arctan~y/x!. ~2!

The two phasesw i and wp do not coincide, and only the
mean frequency defined as the average ofdwp/dt over large
time coincides with 2p/T, where T is the average return
time. The third definition is given by the general approac
which is based on the analytic signal concept introduced
Gabor@13#. The analytic signalz(t) is a complex function of
time constructed as

z~ t !5s~ t !1 isH~ t !5A~ t !eiwH~ t !, ~3!
R4 © 1998 The American Physical Society
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wheresH(t) is Hilbert transform of initial signals(t),

sH~ t !5
1

p
PE

2`

` s~t!

t2t
dt. ~4!

P means that the integral is taken in the sense of Cau
principal value. Instantaneous amplitudeA(t) and phase
wH(t) of s(t) are uniquely defined from Eq.~4!, as well as
instantaneous frequency being the derivative ofwH(t).

Note that consideration of instantaneous amplitude
phase~or frequency! instead ofs andsH means substitution
of variables which is smooth everywhere except the orig
The latter is direct definition of topological equivalen
which is valid if the trajectory does not cross the orig
Therefore, one could use either instantaneous amplitud
frequency to reconstruct the original attractor. Thus, we
unambiguously pass to the phase plane (A,vH),vH(t)
5ẇH(t), treatvH(t) as an independent phase variable a
use it to reconstruct the original attractor.

Now we turn to experimental data measured as time
tervals between intersections by a realizations(t) of some
threshold levelu. Suppose that the plane defined ass(t)
5u can be treated as Poincare` secant. Then we can use th
first method to introduce the instantaneous phasew i and fre-
quencyv i , i.e., we can attribute to each time momentt i the
value of v i(t i)52p/Ti . The valuesv i(t i) can be qualita-
tively treated as the points of coordinate reconstructed fr
vH(t) by means of an averaging method with varying w
dow and known only at discrete time momentst i . We do not
know for sure how the averaged instantaneous freque
vH(t) behaves itself between the time momentst i , but we
can suppose that it is not constant in real chaotic systems
varies smoothly. That is why the natural step is to conn
the existing points with some smooth curve to get an idea
how the real frequency averaged over a moving window w
varying length would behave, at least qualitatively. By
means, we would never obtain exactly the true depende
but we hope that the time series obtained in such a way c
in certain cases reproduce qualitatively the behavior of
of system’s coordinates and thus allow us to reconstruct
proximately the view of original attractor and its dynamic
and geometrical properties.

As an example, consider the famous Ro¨ssler system@14#

ẋ52y2z, ẏ5x1ay, ż5b1~x2c!z, ~5!

in the regime of weak chaosa50.15, b50.2, c56.5. For
this regime phase may be introduced by all the three meth
@12#. Instantaneous frequencyvH versust is shown in Fig.
1~b!. Fast variations ofvH(t) can be smoothed by means
averaging over the quasiperiod@see bold line in Fig. 1~b!#. In
Fig. 1~c! stars mark the pointsv i(t i) and circles mark the
values^vH&(t i)51/Ti* t i

t i 11vH(t)dt. The stars are connecte

by a smooth curve, and the circles by the pieces of stra
line. Note that the behavior of these two dependences is
similar. The phase portrait reconstructed by means of Hilb
transform is shown in Fig. 2~a!. The same phase portrait i
coordinates (A,vH) is given in Fig. 2~b!. Next, we build the
dependencev i(t i)52p/Ti for the values ofTi measured as
time intervals between the coordinatex(t) crossings of zero
hy
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level and lead the smooth curve through all its points
using interpolation technique@Fig. 1~c!#. Thus, a system’s
coordinate is reconstructed from threshold-crossing in
spike intervals. The phase portrait obtained by delay met
from the reconstructed coordinate is shown in Fig. 2~c!.

We only see that it is obviously chaotic. Another way
storing the values ofTi as the time intervals between th
local maxima lead to a very similar phase portrait. The bo
counting algorithm@2# was used to compute fractal dimen
sions of the initial Ro¨ssler attractor and the sets reconstruc

FIG. 1. ~a! First coordinate of Ro¨ssler system in the regime o
weak chaos;~b! time dependence of instantaneous frequencyvH

obtained from the Hilbert transform and the result of averag
^vH&; ~c! the pointsv i(t i) connected by the solid curve and th
values^vH&(t i) connected by the dashed line. The comments
given in the text.

FIG. 2. Phase portraits on the planes~a! (x,xH), wherex is the
first coordinate of the system~5!, xH is Hilbert transform ofx; ~b!
(A,vH), whereA andvH are the instantaneous amplitude and fr
quency, respectively;~c! @v i(t),v i(t1t)#, wherev i(t) is a time
dependence obtained by interpolation~the comments are given in
the text!.
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from the dependences obtained by means of interpola
from the ISI measured by two ways. The plots of log10 M
versus log10 e, whereM is the number of nonempty boxe
ande is the size of a box, are given in Fig. 3~c!. We see that
the linear segments of all three graphs are parallel to e
other. Now vary the parameterc of Rössler system~7! in the
range@5;12# and compute the largest LCE from the coord
natex(t) of this system and from the dependence obtain
by means of interpolation technique from threshold-cross
interspike intervals. The corresponding plots are given
Figs. 3~a! and 3~b! and show the remarkable coincidence
quantitative values of Lyapunov exponents in the wh
range of parameter values.

The results are qualitatively the same if we assume
the values ofv i are known not at the time momentst i but at
the time momentsiT whereT51/n( i 51

n Ti being the average
return time. Namely, the computed values of dimension
largest Lyapunov exponent preserve under this operation

Usually the biologists introduce threshold level so tha
would allow one to capture only global temporal scales
the system, as in Fig. 4~a!. The secant plane defined by su
a way is not a Poincare` secant and the definition of phase v
the times between crossings of this level appears to be
strict comparing to the first definition of phase. It is obvio
that the timesTi introduced for such level are unable
contain detailed information about the system’s dynam
We shall further show that in spite of this fact one is able
extract qualitative information about the dynamical and g
metrical properties of underlying attractor.

Consider the Hodgkin-Huxley system describing the n
ron activity @15#. To obtain chaotic regime we add period
current with the amplitude 4mA/cm2 and the frequency 0.13

FIG. 3. ~a! Largest Lyapunov exponent calculated fromx coor-
dinate of the system~5! vs c; ~b! largest Lyapunov exponent ca
culated fromv i(t) of the system~5! vs c; ~c! plot for estimation of
Hausdorff dimension:M is the number of nonempty boxes,e is the
size of box. The solid line is obtained fromx coordinate of the
system~5!, the dashed line is obtained from zero-crossing ISI, a
the dotted line is obtained from the time intervals between suc
sive maxima ofx.
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kHz @16#. The equations were numerically integrated to o
tain a realization shown in Fig. 4~a!. A threshold level was
introduced as shown in the figure, and time intervals betw
crossings of this level were stored. The same procedur
interpolation was performed@Fig. 4~b!# and the value of larg-
est LCE was evaluated from the initial realization (l1
'0.025) and the reconstructed one (l1'0.03). The plots for
computation of fractal dimension were compared for the
two realizations@Fig. 4~c!#, and although the existence o
linear segments is doubtful they go in parallel. This res
testifies that in spite of the fact that the condition und
which the phase can be defined in the first way is violat
there is an opportunity to obtain a qualitative evaluation
the value of fractal dimension and largest Lyapunov ex
nent. With this, the phase portrait obtained from the rec
structed realization does not remind the initial one at all.

We state that threshold-crossing interspike intervals
enough to reconstruct fractal dimension and larg
Lyapunov exponent of a chaotic attractor of at least sad
focus type, and also to obtain a set looking similar to t
original attractor. This result allows one to apply the alg
rithms for global reconstruction and prediction to the tim
series obtained in such a way from spike train data meas
from different systems. The suggested technique of inter
lation may be disputable, but it demonstrated its workabi
and allowed us to use the standard algorithms for time se
analysis without any modifications. The presented meth
widens greatly the abilities of those who use only thresho
crossing spike train data to study real systems of differ
origin, including biological ones.

The authors thank J. Kurths, M. Rosenblum, and A. P
ovsky for helpful discussions. The work was partly su
ported by INTAS Grant No. INTAS 96-0305.

d
s-

FIG. 4. ~a! Action potential coordinate of Hodgkin-Huxley sys
tem ~the dashed line indicates the threshold level!; ~b! interpolated
time dependence ofv i ; ~c! plot for estimation of the Hausdorf
dimension. The solid line is obtained from the action potential
ordinate of Hodgkin-Huxley system, and the dashed line is obtai
from the realization in~b!.
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