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Abstract. spike separation is a basic prerequisite for analyzing of the
cooperative neural behavior and neural code when registering extracellu-
Iarly. Final performance of any spike sorting method is basically defined
by the quality of the discriminative features extracted from the spike
waveforms. Here we discuss hro features extraction approaches: the prin-
cipal component Analysis (PCA), and methods based on the wavelet
Transform (wr). we show that the wr based methods outperform the
PCA only when properly tuned to the data, otherwise their results may
be comparable or even worse. Then we present a novel method of spike
features extraction based on a combination of the pcA and continuous
wr. our approach allows automatic tuning of the waveret part of the
method by the use of knowledge obtained from the pcA. To illustrate
the methods strength and weakness we provide comparative examples of
their performances using simulated and experimentai data.

1 Introduction

current extracellular experiments provide recordings of multi-unitary activity,
where several neurons nearby to the electrode tip produce short lasting electri-
cal pulses, spikes, of different amplitudes and shapes (see for details ".g. tr]).
Consequently, extracting useful information from these measurements relies on
the ability of separating the recorded firing events into groups or clusters. Ide-
ally each cluster should contain all spikes emitted by only orr" ,r"nro.r. Errors
occur when spikes belonging to different neurons are grouped together (false
positive) or when some spikes emitted by a single neuron are not included into
the group (false negative). The performance of this procedure defines the fina,l
quality and reliability of any bio-physicai results obtained upon the analysis of
spike timings. However, the quality of the spike separation by a human- oper-
ator is significantly below the estimated optimum [2]. Besides, amount of the
data generated by modern experimental setups is really huge, thus there is a big
demand for automatic separation techniques.
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Nowadays there exist a number of numerical techniques targeting classifica-
tion of the extracellular action potentials (see e.g. [1,3] and references therein).
Any method for sorting of spikes relays on two basic steps: i) Extracting the
important (most discriminative) features of the spikes and thus lowering the di-
mension of the pa.rametric set representing the spikes, and also reducing noise
influence; and ii) Clustering of the parametric sets into groups, i.e. identifying
the number of different spike types (neurons) and the membership of spikes in
these groupsl AIso there are many clustering algorithms (see e.g. [4,5]) showing
different performances on different data sets, as a mater of fact, the final perfor-
mance of the spike separation is mostly defined by the quality of the extracted
spike features, i.e. the quality of the first step. Currently available features ex-
traction methods may be divided into three groups: 1) "naive", threshold based;
2) based on the Principal Component Analysis (PCA); and 3) based on the
Wavelet Tlansform (WT). First two methods are the most widely used now,
while the third method becomes more popular and has been demonstrated to
have advantages [6,7,8]. Although these methods show a good performance, the
best representation of the spike feature is still a challenging problem. Here we
anaLyze strength and weakness of the methods and present our novel approach
that combines the PCA and Continous Wavelet Tlansform /CWT).

2 Spike Features Extraction Methods: General
Possibilities and Limitations

The simplest approach to the problem of spike separation is high-pass filtering
following by the amplitude thresholding. obvious disadvantage of this approach
is that the amplitude is not the only feature of a spike waveform, and sepa-
ration of spikes close enough in amplitudes degenerates drastically the method
performance.

Another simple but significantly more powerful tool for spike sorting is the
PCA. within this framework a set of orthogonal vectors is estimated being the
eigenvectors of the covariance matrix constructed from the data. Each spike
is completely represented by a sum of the principal component vectors with
the corresponding weights or scale factors, so called scores. The latter ones are
considered as spike features for sorting. In practice the use of first two or three
components is optimal, since they account for the most important information
about the shapes of action potentials, while higher components are usually very
noisy and decreases the algorithm performance.

A problem occurs when among some number of different waveforms there
are two types with similar shapes and clearly expressed distinctions appearing
only on small time scales. such distinctions are usually not reflected in the
first principal components, and consequently the method fails to separate such
spikes. To illustrate this we generated a test data set consisting of 500 spikes of
fi.ve different waveforms (Fig. 14) corrupted by a noise.

Application of the PCA to the data set reveals four different clusters. First
three clusters correspond to spikes of the wFs 1-3, so demonstrating the poten-
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l:g. 1, An example where the wavelet-based approach outperforms the spike separation
;he PCA. A) Original spike waveforms used for generation of the data set. We use

:-=-arly different waveforms (WF 1-3) and 2 similar waveforms (WF 4 and 5). The

L,-i=:ence between two similar WFs appears on small time scales. B) Feature space
--:.e first two principal components. A zoomed region corresponding to the fourth

u.sler is shown. Spikes of two waveforms (open and solid circles for WFs 4 and 5,
,*,*-;tively) are mixed, and their acceptable separation is impossible. C) The Wave -

rn -:ron chosen for the wavelet-analysis. D) Zoomed region corresponding to fourth

,rr : :tth clusters (WF4 and 5) in the wavelet space. Two clearly distinct clouds are
,,:-::ol. and separation with high fidelity is possible

lL,u :: the PCA approach. However, fourth cluster contains a mixture of spikes

i',u :-r;-, similar waveforms: WFs 4 and 5 (Fig. 1B). Analysis of the Principle Com-

;f,xLi nr*:rs confirms that the difference between WFs 4 and 5 is not reflected in the

umm -r them. Thus PCA based methods fail to separate spikes with differences

,up,rerilg on small scales.

:.*:,:ntly a new approach for spike sorting based on the WT has been devel-

: d.7,8]. This approach is claimed to have advantages in comparison with
-r;,-::niques traditionally used for classification of action potentials. The Con-

-s \\ravelet Tlansform (CWT) of a one-dimensional signal /(t) involves its

,;(t) is a translated and scaled mother wavelet, r/(l), with b and a
lhe time location and scale. Instead of the continuous transform (1), its
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Fig. 2. A case where the PCA provides better separation. Like in Fig. 1, we use a
data set with spikes of 3 clearly different and 2 similar waveforms. However, now the
difference between similar spikes is not so pronounced and is not in small scales. A)
Principle components show a good separation of spikes of wF4 and wFb (open u,nd
solid circles, respectively). B) Wavelet classification. The chosen wavelets-coefficients
demonstrate multi-modal distributions allowing separation of clearly different spikes.
However, separation of wF4 and b is not achieved. c,D) Histogram of spike density
along the first component score (C) and one of the wavelet-coefficients (D). The wavelei-
coefficient demonstrates a multi-modal distribution however the number of peaks (four
in (D)) corresponding to clusters is less than in the pCA case (five ln (C))

discrete counterpart (DWT) is usually used. In the DWT the scale takes onlv
some fixed values (usually a:2i).

several methods for spike sepa"ration based on the DWT have been proposed
[6, 7,8]. They use the fact that the wr of a signal (spike) can be considered. as a
set of filters with different bandwidth controlled by the scale parameter a. Then
the values of the energy found in specific frequency bands during each spike
profile are considered as quantities for spike classification within the framework
of the Wavelet-based Spike Classifier (WSC) [6].

In the case where spike waveforms have a multi-scale structure with any
significant cha,racteristics appearing on small scales, iike in the data set used in
Fig. 1, the wavelets are able to resolve these features. Indeed, application of the
wavelet technique to the data set of Fig. 1 shows that this .pprouch finds all
fi.ve clusters. Figure 1D illustrates a good separation of WF 4 and b into two
clusters, where the PCA had difficulties (Fig. 1B).

Although the wr is potentially more powerful there are a number of problems
restricting its considerable application for spike separation. Here we d.iscuss main
of them:

i.) An arbi,trary cho,ice of the mother waaelet
ii) Complicated selecti,on of the best wauelet-coeffic,ients

c PC I scor

N

-j

tr-

> j

Fig. B. Working principle of tb
_-pond to spikes of different t;pe
s-aveforms obtained by averagial
:-erence between the wavelet_coe
scale. Circles mark the coefficier
_orrespond to the most promiaen
:!,atures space. The found coeffici,
,-orrespond to the centers of the c
olid line shows the results obtair
:5tt11 sen-alated and prominent p
:i spike of different waveforms (l

i) Apparently, the results <
:end on the mother wavelet a,
: _, choose the mother wavelet ir
:-ethod may strongly vary fror
:::ent mother wavelets have br
: . Possible advantages of one r

r'-:ms of the analyzeddata set. a
-li perform better can be giver

:'a.n be olten achieved by select
:i spike waveforms. For instanc
l"od separation we used the so_<
rer-elet is very similar to the W
*.- r'aveforms, including WF4 ar

-1

w{4.8,  r8 i



Separation of Extracellular Spikes t27

A , ,

c

B

o

a 8
N
(.)

a

o

I
, a

- a 2

PC 1 score

D

Pa

t)

2

^ 3
d

.-

"5

w ( 4 . 8 , 1 8 )  n

Fig.3. working principle of the wsAc method. A) Two overlapping clouds corre-

rpJnd to "pik"r oi different types on the PCA plane. Insets show representative spike

;rulr"for*" obtained by averaging over neighborhoods of the cloud centers. B) The dif-

:erence between the wavelet-coefficients for the representative spikes as a function of

=a le .  C i rc les  mark  the  coef f i c ien t  pa i rs  (a  :4 .8 ,b :  18  and a :7 ' \ ,b :32)  tha t

_ rrrespond to the most prominent distinctions between rwFl and rwF2. C) New spike

:=,atures space. The found coefficients are used. D) Spike density along the clouds. Peaks

_,r**pord to the centers of the clouds. Dashed line corresponds to the PCA space, and

,:lid line shows the results obtained in the wavelet space. The later distribution shows

:€tter separated and prominent peaks resulting in a better localization in feature space

-: spike of difierent waveforms (compare clouds in (A) and (C))

i) Apparentiy, the results of the analysis, e.g. the wavelet-coefficients, de-

_,=nd or, the mother wavelet ,ry'. Generally, there is no standard answer on how
I - choose the mother wavelet in a particular case. Thus the performance of the
-erhod may strongly vary from one case to another. For spike separation dif-

:::ent mother wavelets have been advocated: Daubechies [6], coiflet [7], Haar

:'. Possible advantages of one or another depend on the particular spike wave-

,,:ms of the analyzeddata set, and no a-priori assumption which mother wavelet

r,- perform better can be given. In our experience? success of the classification

,,n te often achieved by selection of the mother wavelet similar to the shape

_ =pike waveforms. For instance, in the example shown in Fig. 1, to obtain a

:_.,,d separation we used the so-called "Wave' - wavelet (Fig. 1C). Visually, this

i',i-elet is very similar to the WFs 4 and 5 (Fig' 1A), and a good separation of

' *-aveforms, including \ArF4 and WF5, has been obtained.

scale

I
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ii) Let us assume that the mother wavelet has been somehow selected' Then

the WT of spike waveforms is performed, thus obtaining a numbel (usually

64 in the "u,s" of the DWT and even more for the cwT) of difierent wavelet

coefficients. The right choice of some of them for spike classification is also cru-

cial. Difierent authors suggested different plocedures for coefficient selection, e'g'

large standard deviation, l-g" urr"tuge, multi-modal distribution [6]. Thereis a

mo"ru "o-plicated but at the same time mathematically better justified method

based on the infbrmation theory [7]. However, there is no one universal approach

for the choice of the WT-featuiur capable to provide all the time the best clas-

sification and a counterexample can be always found. The difficulties especially

occur when the analyzed daia contains spiking activity of many neutons, and

among which there are both, clearly difierent and rather similar types of spike

waveforms.
To illustrate a kind of problem that can be found we again generated a test

data set similar to that used in Fig. 1, however now the difference between

the WF 4 and 5 is more pronounced, and no clear difierences on small scales

exist. This helps the PCA to separate all spike gloups including those of sim-

ilar wavefor*r 1fig. 2A). According to one of the wavelet coefficient selection

pro""drrr" [4, a] ihe feature, ur"d for classification should show multi-modal dis-

tribution. Ho'wever in many practical cases multi-modal distribution is obtained

for many wavelet-coeff.cients and there is no clue on how to perform their auto-

matic comparison in order to select the most informative ones. An example of

such quasi arbitrary (unsuccessful) choice of the coefficients is illustrated in Fig'

28. Although the chosen wavelets coefficients have multi-modal distributions

(Fig. 2D) aliowing separation of the first three clearly different spike waveforms,

ihe-wavelet upprou"h gives worse classification of two similar waveforms than

that provided by the PCA (Fig. 2AC)'

3 our Novel Approach for spike Features Extraction

Let us start with a typical situation frequently appearing when processing real

electrophysiological data. We assume that a conventional method of spike fea-

tures extraction (e.g. the PCA) gives two overlapping clouds. For the sake of

simplicity we suppose that these clouds consist of spikes of two types (or we may

airn-at separation of spikes of a given type, say wF1, from the rest, possibly nois5r

spikeJike pulses). Figure 3A shows such an example with the PCA of spikes from

. r"rl "l""irophysiological recording. Let us now sketch our three-steps approach

based on a combination of the PCA-method and the cwT method that we shall

refer to as Wavelet Shape-Accounting Classifier (WSAC)'

First step: Calculation of the representative WaveForms (rWFs)'

The usual PCA is performed on the all available waveforms. Then we average

spike wavefolms in a small neighborhood of each cloud center. As a resuit two

rlpresentative (mean) spike wavefolms are obtained (insets in Fig. 3A)' Since

these wavefolms a,re related to the centers of the corresponding clouds we ca11

suppose that they represent t'real" spike waveforms with lowest noise impact.

Second step: Wavelet tran
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Second step: Wavelet transform of the rWFs and selection of the coefficients

that optimally depict the differences between them.
Two obtained representative spike waveforms are analyzed in the wavelet

space. We seek for those wavelet coeffi.cients that maximize the difference be-

tween the rWFs. Thus the differences betvreen corresponding wavelet coefficients

are estimated and coefficients showing maximal dissimilarity are selected. Figure

38 shows examples of the differences between the obtained wavelet coeffflcients

(for rWFs 1 and 2) as a function of scale. Circles mark two points where the

differences between the wavelet-coefficients are maximized. Note that there may

be more than two extrema for different scales, so increasing the number of fea-

tures (i.e., the wavelet-coefficients) that may be used for classifi.cation. Because

rhe given procedure performs a seaxch of the most prominent distinctions for

the representative spike waveforms, the estimated features can provide a better

resolution between the clusters than that obtained with the PCA.

Third step: Estimation of the selected coefficients for all available spike wave-

iorms and their use as new features for classification.
The coefrcients selected at the second step are estimated for all available

.pike waveforms and then considered as spike features for classification (Fig. 3C).

Figure 3D shows densities of spikes in the PCA and Wavelet feature spaces. Main

:eak in the wavelet space becomes narrower and more pronounced in comparison
rith the distribution obtained for the PCA method. This means that we can now

:etter separate clouds into clusters and reduce classification errors that mostly

:'riginate from a misclassification of spikes in the intermediate (common) part of

.ne clouds.

I Results
-,\-e 

test the proposed approach on three different data sets (S1, 52, and S3).
:ach data set has been obtained in the following way. We take two experimentai

.-ectrophysiological recordings. One of the recordings is selected in the way that

":':kes of one type can be easily separated from the rest by the conventional

-lesholding method. Then these spikes are mixed with another experimental

:.:ording demonstrating complex spiking activity. This procedure, ftom one side,

-ows keeping all characteristics (level and type of noise, spike waveform varia-

-,,n etc.) essential to a real electrophysiological experiment, and from the other

--',lrd we possess the a-priori information about the membership of spikes for

'-e target cluster formed by the "additional" spikes. Hence we can estimate the

.--:sifi.cation error for the given cluster.
The generated data sets have been used as an input to four feature extraction

.*-orithms above discussed. Then clustering by the superpaJamagnetic method
. nas been performed and the number of misclassified spikes has been estimated.

Figure 4 illustrates results obtained for the data set Sl" consisting of 16568

:r-i€ w&v€forms including 3069 "additional" spikes. The PCA gives 2 clusters

: -a. aA) shown in black and gray corresponding to the additional (targeting)
,,: i the original action potentials, respectively. Squares mark unclassifi.ed spikes
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Fig.4. Results of spike separation by different methods for the data set s1. A) Pro-
jection of the feature space for the PCA into first two components, and corresponding

histograms of spike densities. Black points correspond to spikes classified to be be-

Ionging to the targeting cluster. B) The same as in (A) but for the WSC method. C)

The same as in (A) but for the WSAC method. D) Number of misclassified spikes for

different methods and for difierent spike features subsets used for classification

being not related to either of the clusters. Classification of spikes by three first

PCs gives 290 misclassified spikes: 24 false negative and 266 false positive, i.e.

0.8% and 8.6% fromthe total number of spikes in this cluster. The histograms of

spike densities for each coordinate in the features space show a bimodal distri-

bution for the PC1, and uni-modal distribution for the PC2. The former allows

separation of different waveforms into two clusters, while the later does not ac-

tually provide additional information for spike classification.

Figure 48 illustrates the results of spike sorting performed by the wsc

method [6]. Following the author lecommendations, we have chosen for clas-

sifi.cation the wavelet-coefficients showing the largest standard deviations' the

Iargest values and the bimoda,l distributions. Note, that unlike to the PCA, the

histograms in Fig. 48 are both bi-modal, and therefore they actually provide use-

ful information for spike sorting. However, for the considered example we obtain

higher classification error: 410 misclassified spikes (5.2% of false negative and

8.I% of. false positive). Thus a quasi arbitrary choice of the wavelet-coefficients

satisfying the mentioned recommendations did not allowed improving classifica-

tion in comparison to the PCA method.
Figure 4C shows results of spike classification obtained by our WSAC method.

We found that three pairs of coefficients: (6.8, 31), (8.6, 51), and (6.2, 20) max-

A
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Tbble 1. Classification error rates for all data sets and different methods (percentage
of the misclassified spikes to the total number of spikes in the cluster). FN and FP
denote False Negative and False Positive errors

FN/FP Sum FN/FP Sum FN/FP Sum

J 1

PCA 0.8/8.6 e.5
wsc 5.218.r t3.3
WMMC 7.5/8.e 16.4
wsAC 2.8/3.1 5.9

4r.6/11..8 53.4 0.r/2.6 2.7
34.2/t3.8 48.0 6.7 12.9 e.6
28.7/0.8 2e.5 e.5/4.4 r3.9
26.4/8.2 34.6 r.8/0.3 2.1.

imize the difference between the characteristic spike shapes, and used them for

classification. This method provides the best results: 185 errors or 2.87o of false

negative and 3.1% of fa,lse positive.
Figure 4D shows results of spike classification done by these three methods for

different combinations of features used in each particular technique. For instance,
classification performed by the use of first two principle components gives 364
errors (first bar in Fig. 4D), while the same done with PCl and PC3 results in 296

errors. This means that in this case PC3 describes better the va,riation in the data

set than PC2. The use of all three components improves a bit the classification

resulting in 290 enors. Considering WSC we note that each coefficient improves

the results of classifications, but the overall performance is the worst. The WSAC

approach is the winner giving in average the minimal classification error for any
combination of the spike features.

Table 1 summarizes results obtain for all data sets. We also included in the
rable classification errors obtained by the WMMC method based on the approach

rroposed in [8]. This approach performs considerably better for the set 52, while

=howing poor performance in 51 and 53.

5 Conclusions

-{ddressing the question: when the wavelet-based methods outperform the PCA,
-i-e have shown that the main advantage of the WT techniques reveals when deal-

-rg with the detailed structure of experimental signals in a wide range of scales.

lonsidering the WT-approach as a "mathematical microscope", the following
-iterpretation can be given: the wavelets can resolve fine details of a signal
:-:ructure, but we need to choose appropriately the focusing point and the reso-
- rtion of this "microscope". From the mathematical viewpoint the latter means
::at the selection of the parameters a and b in (1) responsible for the resolu-

-on and focusing is of a crucial importance. In the case of successful selection,
':e "microscope" elucidates the differences in spike waveforms. That is why the

.:,rblem of selection of the optimal wavelet-coefficients is an important trend
- the problem of spike sepa,ration. Unlike the PCA-based methods where the
::st principal component scores are used as spike features due to their natural
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order, optimal selection of features within the framework of the WT techniques
is significantly more complicated procedure.

In order to eliminate arbitrariness in the selection of the spike features here
we have proposed a novel technique, the wsAC method. It is based on the
choice of the wavelet-coeffi.cients tuned to the spikes shapes. The main idea of
the method is to find such features of the WT that maximize the differences
between two or more kinds of representative waveforms selected from the exper-
imental recordings, and then to use them for classification of all spikes. Using
different data set we have shown that the proposed method of features selection
outperforms the PCA and the other wavelet-based techniques.

Summa.rizing, we emphasizethat there are at least two cases when the wavelet-
based techniques potentially are preferable than the Principal Component Anal-
ysis: (i) the presence of small-scale structure in waveforms that is not reflected
in the first principal components, and (ii) the presence of strong enough low-
frequency noise that strongly reduces the PCA-method performance whereas
this noise statistics is less essential for the wavelets. In other situations the WT-
based approaches show results compa"rable with the classical technique.
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