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Several methods of restoration of phase portraits were applied to real experimental realizations
a(t) of biological origin. The algorithms for global reconstruction were used to create qual-
itative models of the regimes under study. The results of global modeling were satisfactory
for the time series of simple shape, but in case of complicated inhomogeneous realizations the
traditional algorithms did not give reasonable models. We suggest a method for restoration of
inhomogeneous attractors on a(t) as follows:

x1(t) =

∫ t

0

a(t)dt, x2(t) = a(t)

while the other coordinates could be restored by any known methods (delay, differentiation,
etc.). Such a representation of the attractor’s coordinates preserves a simple form of the first
equation of the system of differential equations sought

dx1

dt
= x2 .

This method was tested first on an artificially produced inhomogeneous realization con-
taining pieces with very slow and very quick motion. After that it was successfully applied to
real biological inhomogenous realizations.

1. Introduction

At present a large number of methods for restora-
tion of phase portraits on one-dimensional experi-
mental realizations of dynamical systems (DS) have
been developed (a good review of them is given in
[Breeden & Packard, 1994]). Very often the problem
of attractor restoration is stated in connection with
the problem of global modeling (reconstruction) of
DS on experimental data, i.e. obtaining an explicit
form of ordinary differential equations (ODE) or
discrete equations qualitatively describing the be-
havior of systems under study [Cremers & Hübler,
1987; Gouesbet & Letellier, 1994]. Moreover, in

recent years the interest to the modeling of systems
of biological origin has been growing (e.g. [Rosen-
blum & Kurths, 1995; Kremliovsky et al., 1996;
Baier et al., 1993]).

Among the systems of biological origin one
may often encounter the ones whose realizations are
highly inhomogeneous, i.e. containing the segments
with quick motion followed by the segments with
very slow motion. A typical example of such time
series is an electrocardiogramme of a human heart
to whose thorough exploration much attention is
being paid during recent years, e.g. [Babloyantz &
Destexhe, 1988; Saparin et al., 1996].
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As it is preferable to obtain models having as
simple form as possible, the method of successive
differentiation of initial time series is rather popu-
lar as it leads to the ODE’s of the following form:

ẋ1 = x2, ẋ2 = x3, . . . ,

ẋN = f(x1, x2, . . . , xN ) .
(1)

But besides the problem of noise greatly affect-
ing the process of derivative computation the prob-
lem of inhomogeneity of the obtained phase portrait
arises. Really, the phase coordinates restored by
successive differentiation of initial inhomogeneous
time series are becoming more and more inhomo-
geneous, and the resulting attractor is a highly in-
homogeneous set in the reconstructed phase space,
the procedure of global reconstruction being compli-
cated due to this. The other commonly used meth-
ods do not significantly improve the situation. For
example, when using the famous delay method one
may vary the value of delay so that the restored at-
tractor becomes homogeneous enough but the dis-
advantage of this is the loss of smoothness of the ob-
tained attractor (this will be illustrated in Sec. 4.2).

In the present paper we discuss a very simple
method allowing one to solve the problem of sharp
inhomogeneity of experimental data when attempt-
ing to make a global model of the system under
study.

2. Description of Method

Consider a typical experimental realization a(t)
which can often be qualitatively presented as a sum
of four items:

a(t) = O(t) + S(t) +N(t) + C , (2)

where O(t) is an oscillatory term which can be ex-
panded into Fourier series and written as O(t) =∑M
k=1(ak sin(kwt) + bk cos(kwt)) (without the con-

stant term corresponding to k=0), S(t) is the “float-
ing” of the average level which may be caused by
nonstationarity as well; N(t) is the additive noise
whose variance DN is much less than the variance
DO of a dynamical component O(t) of the process;
C is a constant shift of the whole realization.

Consider the integral of the whole realization
a1(t) =

∫ t
0 a(τ)dτ as one of the reconstructed co-

ordinates. For stationary noiseless realization with
zero average the new variable a1(t)

a1(t) =

∫ t

0
a(τ)dτ =

∫ t

0
O(τ)dτ = O1(t) (3)

consists of only an oscillatory component. Thus,
since we are mostly interested in the stationary
part O(t) of an oscillatory process, the coordinate
a1(t) will preserve the full information about it.
With this, as one operates with an inhomogeneous
realization, integration of a “slow” segment will
give a quicker time dependence while integration
of a “quick” segment will give a slower function of
time.

The latter means that a1(t) will be more ho-
mogeneous than a(t), and the attractor restored as
follows:

x =

{∫ t

0
a(τ)dτ ; a(t);

da(t)

dt
; . . . ;

dN−2a(t)

dtN−2

}
(4)

or

x =

{∫ t

0
a(τ)dτ ; a(t); a(t+ τ); a(t+ (N − 2)τ)

}
(5)

will be more homogeneous than when using only
the method of delay or differentiation. Moreover,
as one uses the embedding (4) the reconstructed
ODEs have a simple form (1).

3. Testing on a Simple Model

Let us illustrate the work of the described method
using as an example a famous Van der Pol system

ẋ = y, ẏ = a(1− bx2)y − x . (6)

As a > 0, b > 0 the limit cycle is the only at-
tractor of the system [Neymark & Landa, 1987]. To
obtain an inhomogeneous realization (alternation of
“pauses” and quick segments) we perform a nonlin-
ear transformation of coordinate x(t) obtained by
numerical integration of Eqs. (6) (as a = 1, b = 1).
Conventionally speaking, signal x(t) passes a recti-
fier with a given nonlinear characterictic. As a re-
sult, the obtained realization a(t) has the required
shape as shown in Fig. 1(a), and after subtract-
ing the average value from it (so that the average
value of the resulting realization becomes zero), it
was used for the attractor restoration by method
(4) [Fig. 1(b)]. Further, by the method for global
fitting of a model described in [Cremers & Hübler,
1987; Anosov et al., 1995; Janson & Anishchenko,
1995], a four-dimensional DS was reconstructed
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(a) (b)

(c) (d)

Fig. 1. (a) Initial realization of system (6) after nonlinear transformation by the method mentioned in the text; (b) projection
of phase portrait restored on this realization by the method (4); (c), (d) the realization and the projection of attractor of the
corresponding reconstructed DS.

possessing the realization a(t) and the attractor
shown in Figs. 1(c) and 1(d), respectively. Note,
that our attempts to use the methods of delays or
derivatives for the creation of global model of such
a regime failed.

The artificial technique used for obtaining the
realization with “pauses” was neccessary only to
test the method of integration embedding and fur-
ther global modeling.

But in real life such dependences may be
encountered rather often. In fact, all the real-
izations of activities of different hearts are highly
inhomogeneous.

4. Global Reconstruction on
Real Systems’ Realizations

4.1. Real system: Isolated frog’s heart

First, we apply the integration embedding method
to the time series measured from a real system of
biological origin, namely the isolated frog’s heart
(IFH). The experimental realization is the time de-
pendence of a coordinate of point on the surface
of the isolated frog’s heart contracting in a spe-

cial solution. This realization has a rather simple
shape [Fig. 2(a)] but is inhomogeneous at the same
time because of the existence of “pauses” in it. The
additional exploration of the measured realization
(computation of power spectrum and autocorrela-
tion function as well as the dimension estimation)
showed that it is highly periodic and affected by
noise. The experimental noise was filtered from
it by means of the algorithm described in [Press
et al., 1987]. The phase portrait was restored as
follows:

x =

{∫ t

0
a(τ)dτ ; a(t);

da(t)

dt
;
d2a(t)

dt2

}
(7)

and is shown in Fig. 2(b). The fitted dynamical
system of the form (1) modeling the given regime
possesses the attractor identical to the initial one
[Fig. 2(d)] whose realization is shown in Fig. 2(c).

After applying the proposed method for recon-
structing a model on a rather simple inhomoge-
neous time series of biological origin and ensuring
its workability, we move to a more complicated ex-
ample of inhomogeneous realization, namely, the
electrocardiogram of a human heart.
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(a) (b)

(c) (d)

Fig. 2. (a) Initial realization a(t) of mechanical oscillations of a point on the surface of an isolated frog’s heart (after noise
filtration); (b) projection of phase portrait restored on this realization by the method (4); (c), (d) the realization and the
projection of attractor of the corresponding reconstructed DS.

4.2. Modeling of a human ECG

Consider an ECG in the frames of the problem of
synthesis of DS on an observable and pay attention
to the following perculiarities of this signal which
do not allow one to directly apply the traditional
methods for global reconstruction.

The first perculiarity is the sharp inhomogene-
ity of a typical ECG which consists of segments
with quick motion (containing P and T waves and
QRS-complex) and the segments where the motion
is abruptly slowed down or absent, i.e. “pauses”
[Figs. 4(a) and 5(a)].

The use of successive differentiation method
leads to a smooth but sharply inhomogeneous phase
portrait [Fig. 3(a)], when the probability of the
phase point’s staying in the region of “pause” is
much larger than the probability of it traveling to
the other regions of the attractor.

When applying the delay method we can choose
the particular values of time lag τ for which the re-
stored phase portrait is smooth [Fig. 3(b)] but in
this case it is also inhomogeneous. This can be sim-
ply explained as follows. To obtain a smooth attrac-

tor we have to take small values of τ , namely, much
less than the duration of “pause”, and, therefore,
there will be a time interval of finite length (large
enough for reasonable embedding dimensions) dur-
ing which all the phase coordinates will not move
(or move very slowly). We can also choose such time
lags for which the resulting attractor will be more
homogeneous in the sense that as one coordinate
“stays still” in the period of “pause”, at the same
time another one moves, being in its “quick phase”.
But the values of τ required for this will lead to an
attractor containing points where it is not smooth
[Fig. 3(c)] for which it is rather difficult to fit the
phase flow.

Moreover, the minimal embedding dimension
required for the reconstruction should be not less
than 4 [Babloyantz & Destexhe, 1988], and due
to the neccessary presence of noise in experimen-
tal observables, the errors of computation of high-
order derivatives (second and higher) lead to addi-
tional and often unsolvable problems when fitting
the right-hand parts of a model.

The second perculiarity of an ECG of a healthy
human heart is the fact that its single beat of
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(a) (b)

(c)

Fig. 3. Phase portrait restored on ECG (a) by means of successive differentiation; (b) by delay method with τ being much
less than the duration of “pause”; (c) by delay method with τ being close to the duration of “pause”.

duration Ti contains the full information about the
structure of PQRST — peaks with a common time
duration Tc (with this, the value Ti−Tc is the time
duration of “pause”).

First, compare visually the two different arbi-
trarily chosen beats of the same ECG by their sim-
ple overlapping. To perform this comparison, the
durations of two considered segments were equal-
ized by changing only the duration of “pause” and
preserving the PQRST part. Such comparison al-
lows one to speak about the existence of a large
similarity between different beats of ECG. To prove
this similarity more rigorously we used the coher-
ence function γxy [Bendat & Piersol, 1989]:

γ2
xy(f) =

| Gxy(f) |2
Gxx(f)Gyy(f)

, (8)

where Gxx, Gyy are the spectral power densities of
realizations x and y, respectively, Gxy is the mutual
spectral power density. As is known, γxy is equal to
1 if x and y are connected linearly, to 0 if x and y
are uncorrelated and to an intermediate value if the
connection between them is nonlinear or if the real-
izations are polluted by noise. However, to correctly
apply this characteristic, rather long realizations x
and y are required which are absent according to
the condition of our problem. To resolve the estab-
lished contradiction we use the following method:
each of the chosen segments of ECG are being re-
peated many times to obtain a periodic time series

of sufficient length. We shall further call this proce-
dure “closing” because it provides the possibility of
forming a closed curve of a limit cycle type in the
phase space. Since the interval between the R-peaks
corresponds to the initial segment under compari-
son, the closing was performed just with respect to
the R-peak due to which the inserted distortions
consisted in only an almost negligible variation of
the height of this peak.

The coherence function calculated for the resul-
tant time dependencies x(t) and y(t) was averaged
over all frequencies to get a certain global charac-
teristic for their comparison. In our case, in the
interval 0–40 Hz it equals 1 with an accuracy up
to the four decimal points, proving mathematically
the similarity of the above segments of ECG.

Taking into account the described perculiari-
ties of ECG we attempt to model a dynamical sys-
tem whose solution will be a periodic signal repro-
ducing with high accuracy a single period of ECG.
One could put such a model in correspondence with
an electrocardiogram if the heart beats were peri-
odic, the latter coinciding with the early notion of
medical doctors about the functioning of heart in
the absence of fluctuations. Since the later inves-
tigations disproved this notion [Babloyantz & Des-
texhe, 1988], such an approach to modeling may be
argued. However, one should first answer a ques-
tion about the possibility of solving such a simpli-
fied problem because without this knowledge the
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(a) (b)

(c) (d)

Fig. 4. (a) Initial periodic realization obtained by “closing” a single beat of a real ECG of the first type; (b) projection of
phase portrait restored on this realization by the method (4); (c), (d) the realization and the projection of attractor of the
corresponding reconstructed DS.

(a) (b)

(c) (d)

Fig. 5. (a) Initial periodic realization obtained by “closing” a single beat of a real ECG of the second type; (b) projection
of phase portrait restored on this realization by the method (4); (c), (d) the realization and the projection of attractor of the
corresponding reconstructed DS.
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application of reconstruction methods to an ECG
loses its meaning.

To solve the task of modeling, two electro-
cardiograms were chosen which exhibited different
types of behavior from which noise was filtered by
the method [Press et al., 1987] [Figs. 4(a) and 5(a)].
For each of them a single beat was arbitrarily chosen
and subjected to the procedure of closing to obtain
sufficiently long realizations.

Since the system under study (human heart)
produces the realizations with complicated shape
(much more complicated than those considered pre-
viously) and the duration of “pause” is rather long
compared to the “quick” phase (with sharper in-
homogeneity in the latter), it is not enough to use
only one integral of the initial coordinate. For this
case we successively computed two such integrals to
restore the phase vectors as follows. Let b(t) be the
initial signal (artificially obtained periodic realiza-
tion with zero average). We compute

a1(t) =

∫ t

0
b(τ)dτ ; a(t) =

∫ t

0
a1(τ)dτ . (9)

Now, consider a(t) as initial realization. By
means of successive differentiations the remaining
coordinates of phase vector were restored, the lat-
ter finally having the following form:

x =

{
a(t);

da(t)

dt
;
d2a(t)

dt2
; . . . ;

dN−1a(t)

dtN−1

}
. (10)

It is obvious that d2a/dt2 is the initial signal
b(t). The phase portrait projection restored by the
described way on the chosen beats of two differ-
ent ECGs are shown in Fig. 4(b) and Fig. 5(b).
For these two cases we reconstruct two models
(3- and 4-dimensional) in the form of the systems
of ODE’s Eqs. (1), whose solutions are given in
Figs. 4(c), 4(d) and Figs. 5(c), 5(d). We present
the explicit form of one of the obtained models to-
gether with the particular coefficients of function
f(x1, x2, . . . , xN ) in Table 1. We did not succeed
in obtaining similar results when using other meth-
ods for phase portrait restoration.1

Now, let us check the quality of the performed
reconstruction by comparing the solutions of the ob-
tained dynamical systems with the initial (for each
of them) periodic signals (the corresponding clos-
ings of single periods of ECG’s) with the help of

Table 1. The numerical values
of the fitted coefficients of the
sought function

f(x1, x2, x3)

=

3∑
l1, l2, l3=0

Cl1, l2, l3 · x
l1
1 x

l2
2 x

l3
3

(l1 + l2 + l3 ≤ 3)

in the right-hand part of the
global model obtained for one
period of ECG. The initial and
reconstructed realizations are
shown in Figs. 4(a) and 4(c),
respectively.

l1 l2 l3 Cl1, l2, l3

0 0 0 −560

0 0 1 −180

0 0 2 − 1.31356

0 0 3 − 0.00196

0 1 0 2140

0 1 1 −8.3

0 1 2 0

0 2 0 230

0 2 1 0

0 3 0 −230

1 0 0 −17700

1 0 1 −1240

1 0 2 − 4.4

1 1 0 −3850

1 1 1 90

1 2 0 −70

2 0 0 −46525

2 0 1 −2250

2 1 0 −20000

3 0 0 33618

coherence function. It was computed for the range
of frequencies from 0 Hz to 40 Hz, the latter fre-
quency boundary being chosen for the following
reasons.

Filtering the frequencies higher than 40 Hz
leads to the smoothing of peaks and almost neg-
ligible lessening of their height not significantly dis-
torting the shape of ECG. The above considera-
tions allow us to take the frequency range 0–40 Hz

1In paper [Janson & Anishchenko, 1995] we made an attempt to model an ECG with the help of the differentiation method
for the phase vector determination. However, the solution of the obtained model system, though containing all the required
PQRST-peaks, gave a bad enough local description of the initial signal.
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(a) (b)

Fig. 6. Coherence function computed for two pairs “initial signal solution of reconstructed DS” corresponding to two types
of behavior of ECG.

as the region of our interest though we should
note that the mentioned frequency boarderlines are
rather conventional and, besides, depend on a par-
ticular ECG.

Computation of coherence function for two
pairs of signals give the values for global charac-
terictic ≈ 0.998 and ≈ 0.995, respectively. The
full plots for the computed dependencies γxy(f) are
shown in Figs. 6(a) and 6(b). The given plots as
well as the values of global coherence characteristic
provide evidence that there exists an almost linear
dependence between the solutions of reconstructed
model systems and the corresponding initial real-
izations. And, unlike the results of our previous
papers [Janson & Anishchenko, 1995; Anishchenko
et al., 1996], the presently obtained models give a
good local description of initial signals, testifying to
the advantage of the method used.

5. Summary

The results presented allow us to make the following
conclusions.

First, the proposed method for phase vector
restoration allows one to reconstruct the global
model at least for the periodic signals having com-
plicated structure and being sharply inhomoge-
neous by the traditionally used, simple method of
least squares for fitting the sought coefficients. It
makes possible the restoration of a sufficiently ho-
mogeneous attractor from inhomogeneous data, and
thus does not require a more complicated technique
to fit the model.

Second, if some of the phase coordinates are
restored by the integration method, and the re-
maining ones by means of differentiation, the re-
sulting system of ODE’s have the most simple form
[Eqs. (1)].

Third, the discussed integration technique is
less sensitive to noise as compared to the deriva-
tives method.

Along with the stated advantages of the method
discussed, one should point out a rather severe lim-
itation it has, namely, the requirement of highly
stationary experimental realizations. In the present
work we illustrated the workability of the method
using periodic realizations as examples just to avoid
the problem of nonstationarity at the first step.
But the mentioned limitation does not mean that
it is impossible to apply the integration technique
to chaotic data. The only difficulty arising in con-
nection with integration as one deals with chaotic
time series is that it is rather difficult to remove
the nonstationarity from experimentally measured
data. While testing the same method on the nu-
merically computed chaotic realizations of known
model systems (Roessler, etc.), we are sure of its
workability when it is possible to reach any desired
level of stationarity.
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