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We study the influence of external noise on the relaxation to an invariant probability measure for
two types of nonhyperbolic chaotic attractors, a spiral (or coherent) and a noncoherent one. We find
that for the coherent attractor the rate of mixing changes under the influence of noise, although the
largest Lyapunov exponent remains almost unchanged. A mechanism of the noise influence on mixing is
presented which is associated with the dynamics of the instantaneous phase of chaotic trajectories. This
also explains why the noncoherent regime is robust against the presence of external noise.
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Noise is always present in physical and chemical experi-
ments, stronger in biological systems, but also in com-
puter simulations due to roundoff. Its influence on chaotic
systems has been explored intensively in the past decades
[1–3]. However, it has only been proven for hyperbolic
systems that weak noise does not considerably affect
their statistical characteristics. This is because hyperbolic
systems have several fundamental properties, mainly ergo-
dicity and mixing, which provide the existence of an in-
variant probability measure of a chaotic attractor [4–6].
However, there are only a few rather artificially constructed
hyperbolic attractors and several examples of almost-
hyperbolic attractors. For this type of chaotic attractor, the
main properties of hyperbolic systems are preserved, ex-
cept the structural stability [7]. This structural instability
does not influence experimentally the observed charac-
teristics of the chaotic behavior. For almost-hyperbolic
attractors an invariant probability measure may be intro-
duced as well as for robust hyperbolic sets. Statistical
characteristics of almost-hyperbolic attractors are stable
to small perturbations and external noise [8].

However, most chaotic systems are nonhyperbolic [7,9].
The problem of the existence of an invariant measure on
a nonhyperbolic chaotic attractor involves serious difficul-
ties because it is generally impossible to obtain a station-
ary probability distribution being independent of an initial
distribution. When noise is added to the system, an invari-
ant measure on a nonhyperbolic attractor may also exist
[10]. However, in this case characteristics of noisy non-
hyperbolic chaos may strongly depend on both the noise
statistics and noise intensity [11–14].

The rate of relaxation to an invariant measure is one of
the important characteristics of chaotic systems, which is
related to the mixing. For axiom-A diffeomorphisms the
metric Kolmogorov entropy HK [4,5] defines the rate of
mixing. It has been rigorously proven for axiom-A dif-
feomorphisms that the autocorrelation function decreases
exponentially and the correlation time is tcor � H21

K [15].
Additionally, HK is determined by the sum of positive
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Lyapunov exponents, i.e., HK �
P

j lj
1 [16]. However,

such exponential estimates are not always valid for flows
[17,18]. The problem becomes more difficult for noisy
nonhyperbolic chaotic attractors.

In this Letter, we study the rate of relaxation to a sta-
tionary probability distribution of nonhyperbolic chaotic
attractors of a flow system in the presence of noise. If
the noise source is normal and uncorrelated, the temporal
evolution of a probability density can be described by
the Fokker-Planck equation (FPE). For nonlinear chaotic
systems the nonstationary solution of the FPE is difficult
enough to find even numerically. Therefore, in this Let-
ter we use the method of stochastic differential equations
[14]. By analyzing two different types of nonhyperbolic
attractors, a spiral (or coherent) and a noncoherent one
[19,20], we find quite different behavior of the relaxation
rate. In the coherent case, noise strongly affects the mixing
and drastically reduces the correlation time, whereas noise
has almost no influence on the noncoherent attractor. It is
important to mention that in both cases the maximum Lya-
punov exponent remains almost unchanged in the presence
of noise. Therefore, there is a strong difference in hyper-
bolic systems; for the coherent nonhyperbolic system the
mixing (i.e., also the predictability) cannot be related sim-
ply to the Kolmogorov entropy or the Lyapunov exponents.
We explain these findings by means of the dynamics of the
instantaneous phase of the trajectories.

For this purpose we investigate the Rössler system which
is a prototype of a chaotic nonhyperbolic oscillator [19].
If noise is added to the x component it takes the form

�x � 2y 2 z 1
p

2D j�t�, �y � x 1 ay,

�z � b 2 mz 1 xz , (1)

where j�t� is a normal noise source with the mean value
�j�t�� � 0 and correlation �j�t�j�t 1 t�� � d�t�, with
d�?� being Dirac’s function, and D is the noise intensity.

To examine the relaxation to the stationary distribution
in this system, we analyze how points situated at an initial
© 2001 The American Physical Society 054101-1
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time in a cube of small size d around an arbitrary point of
the trajectory belonging to an attractor of the system evolve
with time. We take d � 0.09 for the size of this cube and
fill it uniformly with n � 9000 points. As time goes on,
these points in the phase space are distributed throughout
the whole attractor. To characterize the convergence to the
stationary distribution we follow the temporal evolution of
this set of points and calculate the ensemble average x̄�t� �
1
n

Pn
i�1 xi�t�. Because x̄�t� is an oscillating function, we

compute the function g�tk�,

g�tk� � jx̄m�tk11� 2 x̄m�tk�j , (2)

where x̄m�tk� and x̄m�tk11� are successive extrema of x̄�t�.
Thus, g�tk� can be thought of as the amplitude of the mean
value oscillations of x̄. In Eq. (2) tk and tk11 are suc-
cessive time moments corresponding to the extrema of x̄.
The temporal behavior of g�tk� allows us to judge the
character and the rate of relaxation to the probability mea-
sure on the attractor. Besides, we also calculate the largest
Lyapunov exponent (LE) l1, which is positive in a cha-
otic regime, and the normalized autocorrelation function
R�t� of the steady-state oscillations x�t�. We define R�t�
as R�t� � C�t��C�0� with C�t� � �x�t�x�t 1 t�� 2
�x�t��2, where the angle brackets denote time averaging.

At a � b � 0.2, D � 0 and, in the parameter m range
�4.25, 9�, the system (1) has a chaotic attractor which is
an example of spiral chaos [19]. The phase trajectory on
the spiral attractor rotates with a high regularity around
a saddle focus. The autocorrelation function is oscillat-
ing and the power spectrum exhibits narrow-band peaks
corresponding to the mean rotation frequency, its harmon-
ics, and subharmonics. By virtue of these properties spiral
chaos is called coherent. The chaotic attractor of (1) is
qualitatively changing as the parameter m increases. For
m . 9 there occurs a nonhyperbolic attractor of nonco-
herent type [20], called funnel attractor, which does not
already demonstrate regularity in the behavior of the phase
trajectory. This regime is referred to as noncoherent chaos.

The calculations performed for m [ �4.25, 8.5� (spiral
chaos) and for m [ �9, 13� (noncoherent chaos) allow us
to assume that an invariant probability measure exists for
the parameter values considered. All the effects being
observed for each type of attractor in (1) are qualitatively
preserved when the parameter m is varied. In our numeric
simulation we fix m � 6.1 for the spiral attractor and m �
13 for the funnel attractor.

Figure 1 shows the behavior of g�tk� for both the spiral
and the funnel attractor. We find that, in the regime of spi-
ral attractor, noise significantly influences the rate of relaxa-
tion to the stationary probability distribution [Fig. 1(a)]. It
is strongly decreasing for increasing noise. The decreasing
of g�tk� in time can be approximated as 	 exp�2at�. The
value of a does not depend on the size of the initial cube
but significantly increases with increasing D, e.g., a �
0.02, 0.03, and 0.09 correspond to curves 1, 2, and 3 in
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FIG. 1. Characteristics of the rate of mixing for the Rössler
system in the regime of spiral (m � 6.1) and noncoherent (m �
13) chaos. (a) g�tk� for the spiral attractor (curves 1, 2, and 3
correspond to the noise intensity D � 0, D � 0.001, and D �
0.1, respectively). (b) The largest LE as a function of the noise
intensity for the spiral (curve 1) and the funnel (curve 2) attrac-
tor. Function g�tk� in the regime of noncoherent chaos without
noise (c) and in the presence of noise with D � 0.01 (d).
054101-2



VOLUME 87, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 30 JULY 2001
Fig. 1(a), respectively. However, contrary to this strong
influence on noise, the largest LE l1 [Fig. 1(b)] decreases
only slightly as the noise intensity is varied in the interval
0 # D # 0.1. We find a quite different situation for the
funnel attractor. There the rate of relaxation is practically
insensitive to noise perturbations [Figs. 1(c) and 1(d)]; no
considerable changes are observed in the behavior of g�tk�
when noise sources are added to the system. As before, the
positive LE changes weakly with increasing noise intensity
[see Fig. 1(b), curve 2]. Next we analyze these different
types of responses to noise in more detail.

It is well known that noncoherent chaos exhibits a close
similarity to random processes. This fact can be verified,
e.g., by means of the autocorrelation function R�t� for
the spiral and the funnel attractor in system (1) (Fig. 2).
Our numerical experiments show that the correlation times
tcor are essentially different for these two chaotic regimes:
tcor 
 9500 for the spiral chaos (m � 6.1) and tcor 
 40
for the funnel attractor (m � 13). (The correlation time is
usually understood as the time in the course of which the
autocorrelation function decreases in e times.) On the one
hand, in the case of coherent chaos the correlation time
decreases dramatically in the presence of noise [Fig. 2(a)],
e.g., tcor 
 5500 for D � 0.001 and tcor 
 200 for D �
0.1. On the other hand, the envelopes of the autocorre-
lation functions for the funnel attractor practically coin-
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FIG. 2. Envelopes of autocorrelation functions for system (1):
(a) in the regime of spiral chaos for m � 6.1 and at D � 0
(dotted line), D � 0.001 (dashed line), and D � 0.1 (solid line);
(b) in the regime of noncoherent chaos for m � 13 and at D �
0 (dotted line), and D � 0.01 (solid line).
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cide in the deterministic case with those in the presence
of noise [Fig. 2(b)]. Hence, noncoherent chaos, which is
nonhyperbolic, demonstrates some property of hyperbolic
chaos; i.e., “dynamical stochasticity” turns out to be much
stronger than that imposed from an external (additive) one
[5]. It is also worth noting another important finding of
our simulations. In the regime of spiral chaos the rate of
mixing is not uniquely determined by the largest LE but
depends strongly on the noise intensity. These data are in-
teresting and require more detailed consideration.

We have found that the largest LE is insensitive to
fluctuations, whereas in certain cases the correlation time
changes considerably under the influence of noise. These
facts testify that the Kolmogorov entropy is not the unique
characteristic responsible for the mechanism of mixing on
a nonhyperbolic attractor. We suppose that the essential
effect of noise on relaxation to the stationary distribution
may be associated with peculiarities of the system dynam-
ics. Since the trajectory rotates almost regularly on the
spiral attractor, the relaxation process appears to be very
long. The addition of noise to the system destroys the rela-
tive regularity of the trajectory and, consequently, the rate
of mixing significantly increases.

Numerical calculations performed for chaotic model re-
turn maps have shown that the rate of mixing in a map
is defined by the positive LE and depends weakly on the
noise level. It remains to be seen how noise influences a
regularity of intersections of phase trajectories with some
secant planes. Therefore, we examine a set of trajectories
which start from nearby attractor points of the differential
system (1) and measure the time moments of their inter-
section with a certain secant plane.

It is known that, for chaotic oscillators, one can intro-
duce the notions of instantaneous amplitude and phase
[21]. For the Rössler system (1) the instantaneous phase
can be written as follows

F�t� � arctan

µ
y�t�
x�t�

∂
1 pN �t� , (3)

where N�t� � 0, 1, 2, . . . is the number of intersections of
the trajectory with the plane x � 0.

We consider the instantaneous phase difference Dn �
F2�tn� 2 F1�tn� for two initially close trajectories of sys-
tem (1) at the time tn when the first trajectory crosses the
plane x � 0. Thus, we obtain a sequence of Dn for the
spiral as well as the funnel attractor. We again find that,
in the regime of spiral chaos [Fig. 3(a)], noise drastically
changes the temporal behavior of the phase differences of
two initially neighboring trajectories. When D � 0, the
phase difference varies smoothly and slowly, with the ex-
ception of fine-scaled changes within 6p. However, the
addition of noise leads to changes larger than 2p in short
time intervals. Thus, mixing is strongly enhanced under
the influence of noise. It is important to emphasize that
phase changes are very typical for the noncoherent attrac-
tor already in a purely deterministic case. Therefore, the
054101-3
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FIG. 3. Instantaneous phase difference Dn on n for m �
6.1 (a) and m � 13 (b) in the noise-free case (curves 1) and in
the presence of noise with intensity D � 0.1 (curves 2).

variations of Dn are qualitatively the same without and
with the presence of noise [see Fig. 3(b)]. Thus, for the
funnel attractor the mixing process is practically similar
both in the noisy and in the noise-free case.

In conclusion, we have shown that both the time of re-
laxation to a stationary distribution and the rate of mixing
on noisy nonhyperbolic attractors of flow systems are de-
termined not only by the positive LE but also by the noise
intensity and the instantaneous phase dynamics of chaotic
oscillations. This property has a strong impact on evalu-
ating the predictability of such systems and on modeling
them. It is, therefore, very important to apply the proposed
concept to the study of complex systems in various fields
ranging from economics to living systems, especially in
neuroscience.
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