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Autocorrelation function and spectral linewidth of spiral chaos in a physical experiment
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We present results of physical experiments where we measure the autocorrelation function~ACF! and the
spectral linewidth of the basic frequency of a spiral chaotic attractor in a generator with inertial nonlinearity
both without and in the presence of external noise. It is shown that the ACF of spiral attractors decays
according to an exponential law with a decrement which is defined by the phase diffusion coefficient. It is also
established that the evolution of the instantaneous phase can be approximated by a Wiener random process.
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Chaotic attractors can essentially differ in their structu
and properties. The basic theoretical results were obta
only for robust hyperbolic attractors that represent an id
model of deterministic chaos. In numerical and physical
periments we deal, as a rule, with nonhyperbolic chaotic
tractors for which there is still no exhausting theoretical d
scription. The decay of correlations is one of the fundame
properties of chaotic attractors in the absence of noise@1–4#.
The presence of mixing was rigorously proven for a cert
class of discrete-time hyperbolic chaotic systems. With t
the decrease of autocorrelation functions can be gene
estimated above by an exponential function@1,2#. However,
at the present time there are no rigorous theoretical res
regarding the behavior of autocorrelation functions in flo
chaotic systems with nonhyperbolic attractors.

A phase coherent or spiral attractor is one of the typi
nonhyperbolic chaotic regimes@5,6# that can be realized in
well-known systems such as the Ro¨ssler system, the
Belousov-Zhabotinsky reaction model, the Anishchen
Astakhov system, the Chua system, and many others@6–8#.
Trajectories on a spiral attractor rotate about a saddle fo
almost periodically and thus, the power spectrum exhibit
narrow peak at the frequencyv0 that coincides with the av
erage rotation frequency. The spiral chaos can be descr
in terms of the instantaneous amplitude and phase@9–11#. In
our recent works@12–15# we have shown numerically tha
the rate of ACF decay and the fundamental spectral linew
in the regime of phase-coherent chaos can be mainly defi
by the effective diffusion coefficient of the instantaneo
phase of oscillations. Statistical characteristics of a determ
istic chaotic system appear to be similar to the propertie
oscillations of a noisy Van der Pol oscillator@14#.

The objective of this paper is to answer the followin
fundamental question: Whether the regularities establis
numerically will be fulfilled in physical experiments with
generator of spiral chaos? The answer to this question is
from evident and is principally related to the corresponde
between models and real physical systems. Therefore,
performance of a physical experiment is of high importan

In Refs. @12–16#, stochastic equations of the Ro¨ssler
model and of the Anishchenko-Astakhov generator w
studied in the presence of additive white noise. It is ab
lutely obvious that a physical nonlinear dissipative syst
must be described by stochastic equations that include
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additive and multiplicative noise sources. Unfortunately,
formulation of adequate stochastic equations for the in
cated systems involves insurmountable difficulties. One
the most effective methods to overcome them is to perfo
physical experiments whose results are presented in this
per. The objective of such experiments is to measure the
correlation function~ACF! and the spectral linewidth of spi
ral chaos and to compare experimental findings with the t
oretical and numerical results described in Refs.@12,14–16#.
The experiments were conducted on an experimental
that consisted of a radio-technical generator with iner
nonlinearity~the Anishchenko-Astakhov generator, GIN! @6#
having the basic frequency 18,5 kHz, a computer with a f
analog-to-digital converter~ADC! with the discretization fre-
quency 694,5 kHz, and a Gaussian broadband noise gen
tor with a frequency range from 0 kHz to 100 kHz. Bloc
schemes of the GIN and the experimental unit are show
Fig. 1. The behavior of the ACF was also analyzed in
presence of noise. With this purpose, a broadband noise f
the external noise generator was applied to the system,
the noise intensity could be varied. The generator with in
tial nonlinearity is described by a simple three-dimensio
dynamical system, which is as follows:

ẋ5mx1y2xz2dx3, ẏ52x,

ż52gz1gI~x!x2, I ~x!5H 1, x.0

0, x<0.
~1!

The system~1! can demonstrate the regimes of spiral cha
for certain values of the parametersm andg @6#.

The first important question to be uniquely answered
the experiment is whether a Wiener process approach ca
applied to describe the phase of thex(t) process, as assume
in Refs.@12,15,16,9#. To define the diffusion coefficientBeff ,
the instantaneous phase is introduced by using an analy
signal concept and performing the Hilbert transform for e
perimental realizationsx(t) @11#. Then the phase varianc
sf

2 (t) is calculated by averaging over an ensemble ofN re-
alizations. The effective phase diffusion coefficient is defin
by the rate of the variance growth in time. The tempo
dependence of the phase diffusion shown in Fig. 2 is
rigorously linear as it must be observed for the Wiener p
©2004 The American Physical Society15-1
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cess. However, the linear growth dominates over sm
scaled oscillations of the phase variance. Thus, the pro
under consideration can be related to a Wiener process
diffusion coefficientBeff . The linear dependence defining th
effective diffusion coefficient is found by the least-squa
method. The next step in our experiment is to measure
ACF of chaotic oscillations of the GIN. Several tens of t

FIG. 1. Schemes of a generator with inertial nonlinearity~a!
~1,2—amplifiers, 3—linear amplifier, 4—inertial convertor! and of
an experimental unit~b!, and a picture of the spiral attractor on th
oscilloscope screen~c!.

FIG. 2. Temporal dependence of the phase variance in the p
ence of noise with a root-mean-square value of the noise inten
D50.001 mV and its linear approximation by the least-squ
method~time t is a dimensionless variable and equals the numbe
periods of oscillations!.
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signalx(t) realizations, each of 10 sec duration, were reg
tered by the fast ADC. The total length of realization
(3 –5)3105 oscillation periods with the discretization ste
Dt corresponding to 37 points per period. The ACF is calc
lated as follows. First, we compute the time-average value
the x variable for each of theN realizations of thex(t) pro-
cess:

x̄5
1

n (
i 51

n

x~ t i !. ~2!

Then, we find the mean product^„x(t)x(t1t)…& by averag-
ing over time:

Kl~t!5
1

p (
i 51

p

x~ t i !x~ t i1kDt !, t5kDt i ,

k50,1, . . . ,n2p, ~3!

wherel 51, . . . ,N is the number of realization. When calcu
lating one may encounter a problem which is connected w
the limitation of a number ofx(t i) values,i 51,2, . . . ,n, that
are stored in the ADC buffer. The time-averaging result
converged if the number of averagingsp is sufficiently large.
On the other hand, the greater is the chosenp, the less is the
time tmax5(n2p)Dt for the ACF estimation. As the rate o
correlation splitting is not high in the regime being cons
ered, the ACF must be computed on a very large time in
val. For this reason, the value ofp was chosen to be not to
large. To attain a high precision of the ACF calculation t
obtained data were further averaged overN realizations:

c~t!5
1

N (
l 51

N

Kl~t!2 x̄2. ~4!

The ACF was normalized on its maximal value att50, i.e.,
C(t)5c(t)/c(0). Figure 3 illustrates logarithmic plots o
normalized ACF envelopes that were found experimenta

s-
ity
e
f

FIG. 3. ACF envelopes~solid lines! obtained experimentally for
different rms values of the external noise intensity: 1—D50, 2—
D50.0005 mV, and 3—D50.001 mV, and their exponential ap
proximations ~dashed lines! with the decrement of decayBeff

50.000 24,Beff50.000 33, andBeff50.000 439, respectively. The
other parameters for numeric calculations areN5100, n
5262 144, andp51/2n.
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FIG. 4. ~a! Experimental
power spectrum of thex(t) oscil-
lations in the GIN and its theoret
ical approximation by Eq.~5! with
Beff50.000 33 in the presence o
noise withD50.0005; ~b! power
spectra for D50.001 ~curve 1!
and D50 ~curve 2!; power spec-
tra at the harmonics 2v0 with
2.4Beff ~c! and 3v0 with 4Beff ~d!,
where Beff is the experimentally
found phase diffusion coefficien
~see Fig. 2!.
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for different values of the external noise intensity. The o
tained dependences were approximated according to the
ponential lawCapp(t)5exp(2Befft), whereBeff is the ex-
perimentally found effective diffusion coefficient of th
instantaneous phase. The approximation plots are show
Fig. 3 by symbols. Now let us analyze the results of
power spectrum measurements. The power spectrum
diffusive process looks like a Lorenzian having the wid
that is defined by the effective phase diffusion coefficie
For the normalized spectrum the Lorenzian is given by
following expression:

S~v!5
Beff

Beff
2 1~v2v0!2

. ~5!

In experiment, the effective diffusion coefficient can be
dependently defined by measuring the spectral peak width
order to obtain a more precise value of the diffusion coe
cient, we approximate the spectral peak with the formula~5!
by varyingBeff . The resulting value of the coefficient will b
the one at which the approximation error is minimal@see Fig.
4~a!#.

Figures 4~a! and 4~b! illustrate parts of the experimenta
power spectra of the GIN both without and in the presence
external noise sources. The spectrum was calculated
means of a standard fast Fourier transform method with
eraging. The window length was about 218 points, and the
total number of windows was of order 50. The main resul
that the effective phase diffusion coefficient values estima
from the spectra are in a good agreement with the va
obtained from the linear approximation of the growth of t
instantaneous phase variance. The corresponding phas
fusion coefficient values are given in Table I for three diffe
ent levels of the external noise. Figures 4~c! and 4~d! show
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spectral maxima at the second and third harmonics of
basic frequency forD50 and their corresponding approx
mations. The spectral linewidths at the harmonics appea
be significantly larger than the basic linewidth. We have a
measured spectral linewidths at subharmonicsnv0/2. The
diffusion coefficientBeff ~and the spectral linewidth, respec
tively! for the subharmonicn51 seems to be less than th
corresponding values for the basic frequencyv0. Our addi-
tional numerical calculations with the Ro¨ssler system have
shown that changes in theBeff values for harmonics and
subharmonics are not universal and depend on nonlin
properties of the system. With this, one can only claim tha
n increases, the effective diffusion coefficient grows both
harmonicsnv0 and for subharmonicsnv0/2 when compared
with the value ofBeff at the basic frequency. In conclusion,
has been experimentally established that in the regime
spiral chaos the instantaneous phase variance of chaoti
cillations grows, on an average, linearly with the diffusio
coefficientBeff . Without noise this coefficient is defined b
the chaotic dynamics of the system. In the presence of n
the growth of the phase variance is also linear but theBeff
value increases. The ACF of the spiral chaos decays in t
according to the exponential law exp(2Befft). The spectral
linewidth of oscillations at the basic frequencyv0 is defined

TABLE I. Comparison of phase diffusion coefficient values o
tained by different methods without and in the presence of no
with different intensities.

D ~mV! Beff ~Hilbert! Beff ~spectrum!

0 0.000244 0.000266
0.0005 0.00033 0.000342
0.001 0.000439 0.000443
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by the effective phase diffusion coefficient from the expr
sion ~5!. This formula can be also applied to measure sp
tral linewidths at harmonicsnv0 and subharmonicsnv0/2.
However, in both cases the phase diffusion coefficient val
increase withn when compared with the experimental val
of Beff .

Therefore, it has been convincingly shown numerica
and experimentally that spectral and correlation propertie
a wide class of chaotic systems with attractors of the sp
of
l.

ys

i-
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type can be adequately described by the model of a ran
process of the harmonic noise type.
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