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Autocorrelation function and spectral linewidth of spiral chaos in a physical experiment

Vadim S. Anishchenkd, Tatjana E. Vadivasova,Jirgen Kurths® George A. Okrokvertskhovand Galina I. Strelkova
!Department of Physics, Institute of Nonlinear Dynamics, Saratov State University, 410012 Saratov, Russia
2Group of Nonlinear Dynamics, Institute of Physics, University of Potsdam, D-14415 Potsdam, Germany
(Received 29 October 2003; published 31 March 2004

We present results of physical experiments where we measure the autocorrelation f(hCforand the
spectral linewidth of the basic frequency of a spiral chaotic attractor in a generator with inertial nonlinearity
both without and in the presence of external noise. It is shown that the ACF of spiral attractors decays
according to an exponential law with a decrement which is defined by the phase diffusion coefficient. It is also
established that the evolution of the instantaneous phase can be approximated by a Wiener random process.
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Chaotic attractors can essentially differ in their structureadditive and multiplicative noise sources. Unfortunately, the
and properties. The basic theoretical results were obtaineidrmulation of adequate stochastic equations for the indi-
only for robust hyperbolic attractors that represent an ideatated systems involves insurmountable difficulties. One of
model of deterministic chaos. In numerical and physical exthe most effective methods to overcome them is to perform
periments we deal, as a rule, with nonhyperbolic chaotic atPhysical experiments whose results are presented in this pa-
tractors for which there is still no exhausting theoretical de-Per. The objective of such experiments is to measure the auto
scription. The decay of correlations is one of the fundamentagorrelation functiofACF) and the spectral linewidth of spi-
properties of chaotic attractors in the absence of r{disef]. ral chaos and to compare experimental findings with the the-
The presence of mixing was rigorously proven for a certairoretical and numerical results described in REf2,14-18.
class of discrete-time hyperbolic chaotic systems. With thisThe experiments were conducted on an experimental unit
the decrease of autocorrelation functions can be generalfpat consisted of a radio-technical generator with inertial
estimated above by an exponential functjd;?]. However, — nonlinearity(the Anishchenko-Astakhov generator, GI%6]
at the present time there are no rigorous theoretical resultdaving the basic frequency 18,5 kHz, a computer with a fast
regarding the behavior of autocorrelation functions in flowanalog-to-digital convertgADC) with the discretization fre-
chaotic systems with nonhyperbolic attractors. guency 694,5 kHz, and a Gaussian broadband noise genera-

A phase coherent or spiral attractor is one of the typicafor with a frequency range from 0 kHz to 100 kHz. Block
nonhyperbolic chaotic regimd$,6] that can be realized in Schemes of the GIN and the experimental unit are shown in
well-known systems such as the $ter system, the Fig. 1. The behavior of the ACF was also analyzed in the
Belousov-Zhabotinsky reaction model, the Anishchenkosresence of noise. With this purpose, a broadband noise from
Astakhov system, the Chua system, and many offéerg].  the external noise generator was applied to the system, and
Trajectories on a spiral attractor rotate about a saddle focui§ie noise intensity could be varied. The generator with iner-
almost periodically and thus, the power spectrum exhibits dial nonlinearity is described by a simple three-dimensional
narrow peak at the frequeney, that coincides with the av- dynamical system, which is as follows:
erage rotation frequency. The spiral chaos can be described

in terms of the instantaneous amplitude and pt@séi]. In X= mx+y—xz— 6x3, y: —X,

our recent work§12—15 we have shown numerically that

the rate of ACF decay and the fundamental spectral linewidth 1. x>0

in the regime of phase-coherent chaos can be mainly defined z=—gz+gl(x)x?, 1(x)= ' )
by the effective diffusion coefficient of the instantaneous 0, x=<O0.

phase of oscillations. Statistical characteristics of a determin-
istic chaotic system appear to be similar to the properties ofhe system(1) can demonstrate the regimes of spiral chaos
oscillations of a noisy Van der Pol oscillatfi4]. for certain values of the parametersandg [6].

The objective of this paper is to answer the following The first important question to be uniquely answered by
fundamental question: Whether the regularities establishethe experiment is whether a Wiener process approach can be
numerically will be fulfilled in physical experiments with a applied to describe the phase of th) process, as assumed
generator of spiral chaos? The answer to this question is fan Refs.[12,15,16,9. To define the diffusion coefficiemey,
from evident and is principally related to the correspondencéhe instantaneous phase is introduced by using an analytical
between models and real physical systems. Therefore, thgignal concept and performing the Hilbert transform for ex-
performance of a physical experiment is of high importanceperimental realization(t) [11]. Then the phase variance

In Refs. [12-16, stochastic equations of the &sber (rfl,(t) is calculated by averaging over an ensemblé&at-
model and of the Anishchenko-Astakhov generator weralizations. The effective phase diffusion coefficient is defined
studied in the presence of additive white noise. It is absoby the rate of the variance growth in time. The temporal
lutely obvious that a physical nonlinear dissipative systendependence of the phase diffusion shown in Fig. 2 is not
must be described by stochastic equations that include botfigorously linear as it must be observed for the Wiener pro-
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NOISE FIG. 3. ACF envelopessolid lineg obtained experimentally for
(GENERATOR different rms values of the external noise intensity: =0, 2—
(b) ~ D=0.0005 mV, and 3-B=0.001 mV, and their exponential ap-

proximations (dashed lines with the decrement of decaB.s
=0.000 24,B.4=0.000 33, andB.;=0.000 439, respectively. The
other parameters for numeric calculations ah=100, n
=262 144, ancp=1/2n.

signalx(t) realizations, each of 10 sec duration, were regis-
tered by the fast ADC. The total length of realization is
(3-5)x 10° oscillation periods with the discretization step
At corresponding to 37 points per period. The ACF is calcu-
lated as follows. First, we compute the time-average value of
the x variable for each of th& realizations of the(t) pro-
cess:

(©

FIG. 1. Schemes of a generator with inertial nonlineafiy
(1,2—amplifiers, 3—linear amplifier, 4—inertial convent@nd of
an experimental unit), and a picture of the spiral attractor on the
oscilloscope screeft).

%Z X(t). @

i=1

Then, we find the mean produptx(t)x(t+ 7))) by averag-

) ) ing over time:
cess. However, the linear growth dominates over small-

scaled oscillations of the phase variance. Thus, the process

under consideration can be related to a Wiener process with Ki(7)=
diffusion coefficienB.;. The linear dependence defining the

effective diffusion coefficient is found by the least-square

method. The next step in our experiment is to measure the k=0,1,...n-p, ©)

ACF of chaotic oscillations of the GIN. Several tens of theWherel —1.... Nis the number of realization. When calcu-

lating one may encounter a problem which is connected with
the limitation of a number of(t;) values,i=1,2, ... n, that

are stored in the ADC buffer. The time-averaging result is
converged if the number of averagingss sufficiently large.

On the other hand, the greater is the chogethe less is the
time 7,,,=(n—p)At for the ACF estimation. As the rate of
correlation splitting is not high in the regime being consid-
ered, the ACF must be computed on a very large time inter-
val. For this reason, the value pfwas chosen to be not too

p
Zl X(t)X(t;i+KAt), 7=KAt;,

Tl
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0.1 large. To attain a high precision of the ACF calculation the
00 obtained data were further averaged oMerealizations:
) 100 200 N
t =S k()R @
Y(1)= = K (7)—x°.
FIG. 2. Temporal dependence of the phase variance in the pres- N =1 !

ence of noise with a root-mean-square value of the noise intensity

D=0.001 mV and its linear approximation by the least-squareThe ACF was normalized on its maximal valuerat0, i.e.,
method(timet is a dimensionless variable and equals the number oV (7) = (7)/(0). Figure 3 illustrates logarithmic plots of
periods of oscillations normalized ACF envelopes that were found experimentally
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FIG. 4. (a) Experimental
power spectrum of th&(t) oscil-
lations in the GIN and its theoret-
| | ical approximation by Eq.5) with
-60 =70 Be4=0.000 33 in the presence of

5.90 6.00 & 6.10 6.20 5.9 6.0 & 6.1 6.2 noise with D = 0.0005: (b) power
spectra forD=0.001 (curve 1
! andD=0 (curve 2; power spec-
! tra at the harmonics @, with
| 2.4B4 (c) and 3wy with 4B (d),

\ where By is the experimentally
I found phase diffusion coefficient
S (see Fig. 2
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for different values of the external noise intensity. The ob-spectral maxima at the second and third harmonics of the
tained dependences were approximated according to the elasic frequency foD =0 and their corresponding approxi-
ponential lawW ,,{ 7) =exp(—Bgs7), whereBgy is the ex-  mations. The spectral linewidths at the harmonics appear to
perimentally found effective diffusion coefficient of the be significantly larger than the basic linewidth. We have also
instantaneous phase. The approximation plots are shown measured spectral linewidths at subharmomies)/2. The

Fig. 3 by symbols. Now let us analyze the results of thediffusion coefficientB.4 (and the spectral linewidth, respec-
power spectrum measurements. The power spectrum of tively) for the subharmonion=1 seems to be less than the
diffusive process looks like a Lorenzian having the widthcorresponding values for the basic frequergy Our addi-
that is defined by the effective phase diffusion coefficienttional numerical calculations with the ‘Bsler system have
For the normalized spectrum the Lorenzian is given by theshown that changes in thB; values for harmonics and

following expression: subharmonics are not universal and depend on nonlinear
properties of the system. With this, one can only claim that if
Beft n increases, the effective diffusion coefficient grows both for
S(w)= 5 harmonicsnwg and for subharmonicswy/2 when compared

5 .
Beirt (0= o)? with the value 0B at the basic frequency. In conclusion, it

) . o . . has been experimentally established that in the regime of
In experiment, the effective diffusion coefficient can be in-gpira| chaos the instantaneous phase variance of chaotic os-
dependently defined by measuring the spectral peak width. Igjjjations grows, on an average, linearly with the diffusion
order to obtain a more precise value of the diffusion coeffi-oefficientB.4. Without noise this coefficient is defined by
cient, we approximate the spectral peak with the forntBla  he chaotic dynamics of the system. In the presence of noise
by varylngBeﬁ.. The resultlng valge of the.coefﬂ.clent W|I_I be ihe growth of the phase variance is also linear butBgg

the one at which the approximation error is minirfege Fig.  y5jye increases. The ACF of the spiral chaos decays in time
4(@)]. according to the exponential law expB.s7). The spectral

Figures 4a) and 4b) illustrate parts of the experimental |;,o\idth of oscillations at the basic frequeney is defined
power spectra of the GIN both without and in the presence of
external noise sources. The spectrum was calculated by ) . .
means of a standard fast Fourier transform method with av- ABLE I. Comparison of phase diffusion coefficient values ob-
eraging. The window length was abou’cszboints and the tained by different methods without and in the presence of noise
total number of windows was of order 50. The main result isWIth different intensities.

that the effective phase diffusion coefficient values estimate%

from the spectra are in a good agreement with the values (mV) Ben (Hilber) Ber (Spectrum
obtained from the linear approximation of the growth of theo 0.000244 0.000266
instantaneous phase variance. The corresponding phase difpoos 0.00033 0.000342
fusion coefficient values are given in Table | for three differ- 9,001 0.000439 0.000443

ent levels of the external noise. Figuregg)4and 4d) show
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by the effective phase diffusion coefficient from the expres-type can be adequately described by the model of a random
sion (5). This formula can be also applied to measure specprocess of the harmonic noise type.

tral linewidths at harmonicawo and subharmonicawe/2. The work was partly supported by Grant No. SR-006-X1

However, in both cases the phase diffusion coefficient valuegf the CRDF and the Russian Ministry of Higher Education

increase witn when compared with the experimental value (Grant No. E02-3.2-345 G.1.S. acknowledges support from

Of Besf- _ o _ INTAS (Grant No. YSF 2002-3/Fla RenewaV.S.A. and
Therefore, it has been convincingly shown numericallyT.E.V. acknowledge support from INTAS Grant No. 01-

and experimentally that spectral and correlation properties af061. G.A.O. acknowledges support from INTASrant No.

a wide class of chaotic systems with attractors of the spirab2-867.
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