PHYSICAL REVIEW E, VOLUME 65, 036206

Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic
attractors in the presence of noise
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We study the relaxation to an invariant probability measure on quasihyperbolic and nonhyperbolic chaotic
attractors in the presence of noise. We also compare different characteristics of the rate of mixing and show
numerically that the rate of mixing for nonhyperbolic chaotic attractors can significantly change under the
influence of noise. A mechanism of the noise influence on mixing is presented, which is associated with the
dynamics of the instantaneous phase of chaotic trajectories. We also analyze how the synchronization effect
can influence the rate of mixing in a system of two coupled chaotic oscillators.
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[. INTRODUCTION attractors being observed and their properties will depend on

both the noise statistics and noise intensity. Threshold effects

It is known that nonlinear dynamical systems can demonmay emerge, which characterize noise-induced transitions
strate both simple oscillations, such as periodic and quasig18,20—22. In the nonhyperbolic case the behavior of phase
eriodic, and chaotic oscillations. From a viewpoint of thetrajectories is significantly affected by the noise while it
rigorous theory, hyperbolic chaos is often called “true” changes only slightly in systems with hyperbolic and nearly
chaos and is characterized by a homogeneous and topolodlyPerbolic chaos. Consequently, there is a principal differ-

cally stable structurfl—5]. However, strange chaotic attrac- €nce to the shadowing problef3,15,23,24

tors of dissipative systems are not, as a rule, robust hyper- A statis.tical Qescription of no_isy nonhyperbolic chaotic
jgttractors is an important and still unsolved problem of the

attractors, e.g., the Lorenz attractor. Nearly hyperbolicdyr“”‘m'c"’II systems theory. One of the topical problems in

(quasihyperbolig attractors include some nonrobust orbits,t.hIS d|_rec_t|on s to study the relaxation to stationary dlstrlbu-
: . . tions in time. There are a number of fundamental questions
e.g., separatrix loops, but their appearances and disappe

ften d ¢ affect the ob d ch terisi at have as yet unclear answers. What is a real relaxation
ances often do not aftect the observed characteristics Qf,q of ihe system to a stationary distribution? Which factors

chaos, such as a phase portrait, the power SpectiUMyefine this time? Which characteristics can quantify the re-
Lyapunov exponents, and others. Dynamical systems in fyation time to the stationary measure? What is the role of
chaotic regime may give rise to an invariant measure thaghe nojse statistics and the noise intensity in regularities of
does not depend on an initial distribution and fully reflectsihe rejaxation to the stationary distribution? Is there any con-
the statistical properties of the attractor. The existence of agection between the relaxation process and the system dy-
invariant measure has been theoretically proven for hypemamics?
bolic and nearly hyperbolic systerfs—11]. Moreover, it has The relaxation to a stationary distribution, if the latter
been also established that the white noise of small intensitgxists, is described by the evolutionary equations. If the
causes small changes of the structure of stationary distriburoise source is normal and uncorrelated, this process is de-
tion. Statistical characteristics of hyperbolic and quasihyperiermined by the Fokker-Planck equatiofrPE) or the
bolic systems are robust to small perturbatiph®—-15. Frobenius-Perron equation. However, if the dynamical sys-
However, most chaotic attractors that we deal with in nu-tem is high dimensionalN=3), the nonstationary solution
meric and full-scale experiments are nonhyperbfdi&—18. of the FPE is difficult enough to find even numerically. Thus,
The problem of the existence of an invariant measure on & our studies we use the method of stochastic differential
nonhyperbolic chaotic attractor involves serious difficultiesequations[22]. The relaxation to the invariant probability
because it is generally impossible to obtain a stationary probmeasure is related to the mixing. In chaotic systems that have
ability distribution being independent of an initial distribu- an invariant probability measufé,7,3,10,8,9the properties
tion. A nonhyperbolic attractor is a maximal attractor of the of mixing can be characterized by the Kolmogorov entropy
dynamical system and encloses a countable set of both reght, [25,26 that determines the characteristic time of mixing,
lar and chaotic attracting subs¢is,17. Whené-correlated 7 =H,'. For invertible maps that satisfy the Smale
Gaussian noise is added to the system, an invariant measuigiom, Tmix defines the rate of exponential decay of the au-

on such attractors exists tg@9]. But there may be serious tocorrelation function. It has been proven tha}
problems if the external noise has a finite correlation time

and is not Gaussian. The statistical properties of such typical
sources of noise present in nonhyperbolic systems will define
a number of coexisting attractors, their stationary measure as
well as the relaxation time to this measure. The number ofrhis means that the correlation timg,, coincides withry .

T (r)=exp—Hg7). (1)
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1.0 : : pends on the motion of the phase point along the trajectory
(a) outside of the Poincargection. The mixing in the map must
: rather satisfy Eg.(1) and be defined by the positive
YK) g5 | ] Lyapunov exponenfor example, see Fig.(&)]. The second

component is the mixing process along the flow of the phase
trajectories and depends on the properties of the phase tra-
jectories motion between the consecutive returns to the Poin-
0.0 R P caresection.
k In this paper we study numerically the relaxation to a
10 ' . stationary measure on nonhyperbolic attractors of the differ-
ent structure in the presence of noise. We attempt to answer
(b) at least a part of the questions stated above. In particular, we
pay our attention to the following problems.
¥, (™) o5t 1 (1) The inter-relation between the relaxation rate of a cha-
otic system to a stationary probability distribution, the auto-

correlation function and the Kolmogorov entropy in the case
0.0 e, of nearly hyperbolic and nonhyperbolic attractors.
0 2 4 (2) The influence of noise on the rate of relaxation and on
the characteristics of mixing for different types of chaos.
This paper develops and supplements the main results re-
approximation (1) (dotted ling for (a) the Lozi mapXx,, =1 cently reported in Re1[31]._The organization of the paper is
—alXy|+Yn: Yne1=bx, ata=1.75, b=0.3 and(b) the Lorenz as fqllowg. In Sec. Il we introduce _the models that we are
attractor forr =28, o= 10, andb=8/3. dealing with and describe the numeric methods. Section Il is
devoted to the study of the relaxation to a stationary distri-
bution on both a quasihyperbolic and a nonhyperbolic attrac-
tor in the Lorenz system. In both cases we investigate the
role of external noise. In Sec. IV we consider the relaxation
process for two different nonhyperbolic chaotic attractors in
K the Rsler system. We compare the results obtained in Secs.
Hy = SN, ) Il and IV and presgnt a mechanism of t.he'noi'se influence on
i= the rate of relaxation to a stationary distribution. In Sec. V
we examine the relaxation process in a system of two inter-

where)ﬁ are the positive Lyapunov exponents. In more gen_actmg Rasler oscillators. And finally, we summarize the ob-
eral cases the upper bound is valid, i. HK$27\+ tained numeric results and formulate conclusions in Sec. VI.

[26,27,11,9.

As has been noted above, a stationary distribution and Il. MODELS AND NUMERIC METHODS
consequently, a probability measure on a nonhyperbolic cha-
otic attractor without the noise are not defined. The equality We investigate chaotic attractors in paradigmatic
(2) is not valid for nonhyperbolic attractors. Thus, the prob-continuous-time systems both in the absence and in the pres-
lem of the interconnection among the time of mixing, theence of noise. In particular, we consider the Lorenz system
correlation time, and the positive Lyapunov exponent in dif-[32]
ferential systems and maps still remains unresolved. Figure 1
shows theoreticall) and numerical results of the autocorre-
lation function for the Lozi magd28] and for the Lorenz
attractor. We observe that the experimental and theoretical .
estimates for the Lozi majg-ig. 1(a)] are in good agreement y=rx—y—xz, 3
with each other and thus verify the conclusions of Pesin’s
theorem[27]. However, in the case of the Lorenz attractor .
[Fig. 1(b)] the experimental dependence cannot be approxi- z=—pz+txy,
mated by formulg1) and is characterized by a smaller cor-
relation time. This result testifies that exponential estimateand the Resler oscillatof33]
for the rate of correlations decreasing as well as for the mix-
ing time are not always valid for flow syster{29,30, even

FIG. 1. Autocorrelation functiorisolid line) and its theoretical

At the same time, when the conditions of strong hyperbolic-
ity are fulfilled, the Kolmogorov entropy is defined by the
equality

x=—o(x—y)+\2D&(t),

in the nearly hyperbolic case. x=—y—z+y2D&(Y),
The mixing on a chaotic attractor of a flow systemHif
can be represented as a superposition of two processes if we y:x+ ay, 4

introduce an appropriately chosen Poincseetion. The first
component is the mixing produced by a map on the two- ]
dimensional Poincarsection, whereas the second one de- z=b—mz+xz.
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In both modelst(t) is a normal white noise sourteith the -
mean valug £(t))=0 and correlatioq &(t) &(t+ 7))=8(7), x(t) /\
where §() is Dirac’s function. The paramet& denotes the X A
noise intensity. In the Lorenz system we choose two different

regimes, namely, a quasihyperbolic attractar=(10, B

=8/3, andr=28) and a nonhyperbolic attractos€ 10, 8

=8/3, andr=210). For the Rssler system we fixa=0.2 X1
andb=0.2 and vary the control parameterin the interval

[4.25,13. We integrate Eq9.3) and(4) using a fourth-order

Runge-Kutta routine with fluctuations taken into account. b et ¢

Chaotic attractors of systen() and(4) have been studied in FIG. 2. Schematic illustration of the calculationgft,) Eqg. (6).
detail and are typical examples of quasihyperbolic and non-

hyperbolic chaos. Thus, results obtained for E§8and(4)  \we can estimate the tim&, in the course of which the
can be generalized to a wide class of dynamical systeMsationary probability density can be obtained with a given

[34,39. , , . accuracys, i.e., when the inequality(t,)<s is fulfilled for
To examine the relaxation to a stationary d|str|but|or1 in nyt>T,, ands is small. However, this characteristic has
these systems, we analyze how points situated at an initigyme gisadvantages, one of which is thatdepends on the
time in a cube of small sizé around an arbitrary point of the ;pitia| magnitude of the phase space element that we follow.
trajectory belonging to an attractor of the system evolve with,,,. nymeric calculations have shown that for the attractors
tlme. We take5=0.09 for the size Of-'[hIS cube and fill it under study eitheg(t,) or its envelope can be approximated
un!form_ly with n=9000 points. As_ time goes on, these by the exponential lawy(t,)~exp(t/a). The exponentx
points in the phase space are distributed throughout thgiqtes the time, in which the function graph decreases in
whole attractor. To characterize the convergence 10 the Stggneg angd characterizes the rate of mixing. The value of
tionary d|_str|but|on we follow the temporal evolution of this yoaq not depend on the size of the initial phase space element
set of points and calculate the ensemble average but significantly increases with the increasing noise intensity
L0 D. This quantity appears to be more suitable for estimating
() — _- _ the rate of mixing.
X(t) pr(x,t)x dx n 21 Xi(t). © We also calculate the maximal Lyapunov expongri)
N\, of a chaotic trajectory on an attractor. For hyperbolic
Here,x is one of the system dynamical variables, af#,t) attractors inR® \; is positive, has the same value for all
is the probability density of the variableat the timet, which  typical phase trajectories and represents an averaged charac-
corresponds to the chosen initial distribution. It is known thatteristic of the rate of mixing. In the nonhyperbolic case, the
the phase trajectory of systefB) visits neighborhoods of maximal LE, as well as other characteristics computed along
two saddle foci. In this case, when calculating@) one may @ Single trajectory, may depend on the choice of this trajec-
first sum separately over points having fallen in the neighfory. However, since a “computer noise” is inevitably
borhood of each saddle focus, and then combine the obtaind€Sent in numeric experiments, such a dependence cannot
results. However, the mean value appears to approach zerol#¢ always detected. Besides, we also compute the normal-
a short time interval and its further evolution is badly de-ized autocorrelation function of steady-state oscillations
tected. To follow the relaxation in Eq3) we compute the X(1),
mean value when points in the neighborhood of only one

saddle focus are taken into account. In this case the relax- (X(OX(t+ 7)) =x()x(t+7)

ation to this quantity goes more slowly in time. Then we W(r)= \/ > = 5 = .

calculate the functiony(t,), [(x5(0)) =X J[(X(t+ 7)) —=x*(t+7)] -
(1) =[Xm(tics-2) = Xm(t], ®) To make some figures more informative and compact, in-

_ _ _ stead ofy(t,) and¥(7) we plot(where it is necessaryheir
wherexm(ty) andxp(ty.1) are successive extrema xft).  envelopesyy(t,) and¥ (), respectively.
Thus, y(t,) characterizes the amplitude of the mean value
gsmllauons(see Fig. 2 In Eg. (6) t, andty 4 are successive 1. RELAXATION TO A PROBABILITY MEASURE
time moments corresponding to the extremaxofhe tem- IN THE LORENZ SYSTEM
poral behavior ofy(t,) allows to judge the character and the

rate of relaxation to the probability measure on the attractor. We start with considering chaotic attractors in the Lorenz
system and are interested in knowing as to how additive

noise influences the relaxation to their stationary distribu-
IThe noise source is added to only one equation of the dynamicdions. Figure 3 shows the behavior g§(t,) for both quasi-
systems(3) and (4) as the inclusion of noise in all three equations hyperbolic and nonhyperbolic chaotic attractors of EHgS.
does not change qualitatively the results but significantly retardgvith and without noise added. We find that for the Lorenz
integration. attractor noise does not significantly influence the relaxation
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FIG. 3. yo(ty) for chaotic attractors in the Lorenz systégy. (a) (©)
Forr=28 andD =0 (solid line), andD =0.01 (dotted ling; (b) for 1/7\‘
r=210 andD =0 (thick line), and forr =210 andD = 0.01 (thin 5 r -
line). ju;;;iﬁ.i.:n
rate[Fig. 3(@]. However, we observe a quite different situ- 20 70 T12° 170
ation for the nonhyperbolic attractor. There the rate of relax- €

ation is strongly affected by noidé€igs. 3b) and 3c)] and
the characteristic time decreases more than twice under the
influence of noisgsee Table)l Besides, the time of relax-
ation to the stationary distribution of the nonhyperbolic at-
tractor[Figs. 3b,0)] is abruptly increased as compared with
that one for the quasihyperbolic attrac{®ig. 3@)].

If the characteristic time of mixing satisfies the relation
Tmix~ 1\ ", then we may assume th@if, « and 1A" are
directly proportional to each other. To simplify our compu
tations of T, anda as functions of the systef8) parameter,
we use a one-dimensional map that simulates the return m
in a Poincare section of the Lorenz attractdB6]),

FIG. 4. For the model mag8), () T, as a function of the
control parameteb; (b) 1/\ versusb, and(c) 1/\ as a function of

e

wherea=1/b+0.001. Figures é,b shows the dependences
of T, and 1A on the control parametds in the region of
positive\. It is seen that both functions are quite similar. For
illustrative purposes we also pldt, versus IX in Fig. 4(c).

" There points are arranged along a straight line whose slope
defines the coefficient of proportionali. Thus, the rate of
Emixing in the model map is unambiguously determined by
the A\ ™. This result is in complete agreement with theoreti-
cally proven statements for hyperbolic one-to-one two-

1-b|x,|2, X,e[—1,0) dimensional maps, although m#®) does not generally be-
long to this class.
Xpi1=1 0, X,=0 8 As we have shown for the nonhyperbolic attractor in sys-
—1+b|x,|3, Xn e (0,1], tem (3), the rate of mixing predicted by means af can

TABLE I. The exponentx, the largest LE\; and the correlation time,, for attractors in the Lorenz
system ¢=10,86=8/3) and the Rssler systemd=0.2p=0.2).

Lorenz system Resler system
r D o N Teor m D a Ny Teor
28 0 0.056 0.92 0.4 6.1 0 470 0.082 9500
28 0.01 0.056 0.92 0.4 6.1 0.001 330 0.081 5500
210 0 165 0.86 25000 6.1 0.1 110 0.081 200
210 0.01 78 0.86 13000 13 0 40 0.11 40
13 0.01 45 0.11 40
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1.0 : : Since the statistical characteristics of hyperbolic and
(a) quasihyperbolic attractors are known to be stable to noise
perturbationg 7,13—-15,19, we can predict that characteris-
Y,(T) tics of the mixing rate for this type of attractor will be insen-

sitive to the influence of noise. On the contrary, in a regime
of nonhyperbolic attractor the noise affects significantly the
""" chaotic system behavior. Thus, in this case noise can change
0.0 0 1 2 3 essentially the mixing characteristics. To verify this state-
T ment we analyze nonhyperbolic attractors of different types.
1 : The nonhyperbolic attractor in the Lorenz system represents
" (b) a frequently encountered type of nonhyperbolic attractors,
. called spiral attractof37,34,38. It is usually generated
¥ (1) through an infinite sequence of period-doubling bifurcations.
0 ' A chaotic attractor realizing in the Rsler systeng4) at fixed
a=b=0.2 and in the parameten interval[4.25,8.9 serves
as a well-known example of a spiral attractor. The phase
trajectory on the spiral attractor rotates with a high regularity
around one or several saddle foci. The autocorrelation func-
tion is oscillating and the power spectrum exhibits narrow-
FIG. 5. Envelopes of the normalized autocorrelation functionband peaks corresponding to the mean rotation frequency, its
W o(7) for attractors in syster(8). (a) r =28 andD =0 (solid line), harmonics, and subharmonics. By virtue of these properties
and D=0.01 (dotted ling; (b) r=210, D=0 (solid line), andD  spiral chaos is called phase cohergs&,39,4Q.
=0.01 (dotted ling. The chaotic attractor of Eq4) is qualitatively changing
as the parametem increases. In the interval 8&5m<13
there occurs a nonhyperbolic attractor of noncoherent type,
considerably change under the influence of noise. Now wealled funnel attractof37,34]. Phase trajectories on the fun-
are going to check whether the other characteristics of theel attractor make complicated loops around a saddle focus
mixing rate, such as the LE and the correlation time, willand thus, demonstrate a nonregular rotation behavior. Conse-
also depend on noise perturbations. For the same chaotigiently, the autocorrelation function of the noncoherent
attractors in the Lorenz system we compute the largest . E chaos decreases much rapidly than that in the coherent case,
and estimate the normalized autocorrelation functionand the power spectrum does not already contain sharp
W(r), T=t,—t,, of the dynamical variable(t) for differ-  peaks.
ent noise intensitieB. The values ok ; and 7, are given in The calculations performed fome[4.25,7.3 (spiral
Table 1. We find that for both types of chaotic attractors thechao$ and for me[8.5,13 (noncoherent chapsallow to
LE does not depend, within the calculation accuracy, on thassume that an invariant probability measure exists for the
noise intensity. The autocorrelation function of the quasihyparameter values considered. All the effects being observed
perbolic attractor is practically not affected by noisee for each type of attractor in Eq4) are qualitatively pre-
curves 1 and 2 in Fig. (®]. However, in the regime of a served when the parametaris varied. In our numeric simu-
nonhyperbolic attractor it decreases more rapidly in the predation we fix m=6.1 for the spiral attractor anch=13 for
ence of noisdsee curves in Figs.(&,b]. Our calculations the funnel attractor.
show that the correlation time.,, for the quasihyperbolic Figure 6 shows the typical behavior gf(t) for both the
chaos does not depend on the noise level, whereas for thgiral and the funnel attractor of the &er system. We find
nonhyperbolic attractor it decreases almost twice under thehat, as in the case of the spiral attractor in the Lorenz sys-
influence of noisésee Table )l tem, the noise significantly influences the rate of mixing in
Thus, on the one hand, the maximal LE of both chaoticthe regime of spiral attractor in the ‘Beler system. The
attractors remains almost unchanged in the presence of noisgalue of « is strongly decreasing for the increasing noise
On the other hand, while for the quasihyperbolic attractorintensity[see Table | and Fig.(6)].
Teor @aNd « are practically insensitive to fluctuations, these  We find a quite different situation for the funnel attractor.
characteristics for the nonhyperbolic attractor change considNoncoherent chaos is practically insensitive to noise pertur-

0 35000 70000

erably under the influence of noise. bations. Botha and \; do not significantly change when
noise is added to Eg#4). At the same time, it is well known
IV. RELAXATION TO A STATIONARY DISTRIBUTION that noncoherent chaos exhibits a close similarity to random
IN THE RO SSLER SYSTEM: MECHANISM OF processes. This fact can be verified, e.g., by means of the
THE EFFECT OF NOISE ON THE RATE OF MIXING autocorrelation functionV (7) for the spiral and the funnel

attractors in systen¥) (Fig. 7). Our numerical experiments
In the preceding section we have analyzed two differenshow that the correlation times are essentially different for
chaotic attractors in the Lorenz system and found a quitehese two chaotic regimesee Table )i without noise they
different effect of noise on the relaxation process. In thisdiffer by two orders. On the one hand, in the case of coherent
section we try to explain a mechanism of this difference. chaos the correlation time decreases dramatically in the pres-
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FIG. 8. For the Resler system)\, on the spiraktriangles and
the funnel(circles) attractor as functions of the noise intendily

mixing is not uniquely determined by the largest LE but
depends strongly on the noise intensity. This result does not
match theoretical conclusion®5,26 obtained for hyper-
bolic chaos in two-dimensional maps.

We have found that the positive LE is weakly sensitive to
fluctuations(see Fig. 8 and rather grows not much with the
. increasing noise intensity, whereas in certain cases the cor-
0 : 100" 00 relgtion time change.f,_considerably under the influence of

t noise. Thus, the positive Lyapunov exponents are not the
unigue characteristic responsible for the mechanism of mix-

FIG. 6. y(t,) for attractors in the Resler systeni4). (a) For NG on a nonhyperbolic attractor. We suppose that the essen-
the spiral attractorri=6.1) for D=0 (curve 3, D=0.001(curve tial effect of noise on relaxation to the stationary distribution

2), andD=0.1 (curve 3; (b) for the funnel attractorra=13) for ~May be associated with peculiarities of the phase trajectory
D=0 (solid line) and forD=0.01 (dotted ling. dynamics in the neighborhood of an unstable equilibrium
state. Since the trajectory rotates almost regularly on the spi-
ence of nois¢Fig. 7(a) and Table ). On the other hand, the ral attractor, the relaxation process appears to be very long.
autocorrelation function for the funnel attractor in the deter-The addition of noise to the system destroys the relative
ministic case practically coincides with that in the presenceegularity of the trajectory and, consequently, the rate of
of noise[Fig. 7(b)]. Hence, noncoherent chaos, which is non-mixing significantly increases.
hyperbolic, demonstrates some property of hyperbolic chaos, It is known that for chaotic oscillations one can introduce
i.e., “dynamical stochasticity” turns out to be much strongerthe notion of instantaneous amplitude and phiakd. The
than that imposed from an extern@dditive one[7]. This  instantaneous phase characterizes the rotation of a trajectory
experimental result is interesting and requires a more dearound a saddle focus. Systéd) is of such type because the
tailed consideration. It is also worth noting another finding oftrajectory in the X-y) projection rotates around the unique
our simulations. In the regime of spiral chaos the rate ofsaddle focus located very near to the origin. To quantify the
trajectory dynamics in this case, the instantaneous phase can
1 ; be introduced as follows:

Yo(tk ) 20

<I>(t)=arctanw+wn(t), 9
Y1) X(t)
wheren(t)=0,1,2 ... is thenumber of intersections of the
phase trajectory with the plane=0.
o5 20000 """"46000 We consider the instantaneous phase differedce
T =d,(t,)—D,(t,) of two initially close trajectories of sys-
1 ‘ tem (4) as a function of the time. We again find that in the
regime of spiral chaofFig. 9a)], noise drastically changes
(b) the temporal behavior of the phase differendeb. When
D=0, the phase difference varies slowly, with the exception
of fine-scaled changes within 77. However, the addition of
noise leads to changes af® much larger than #. Thus,
mixing is strongly enhanced under the influence of noise. It
= VTGS is important to emphasize that phase changes are very typical
0 250 500 for the non-coherent attractor already in a purely determin-
T istic case. Therefore, the variations &f, are qualitatively
FIG. 7. Envelopes of the normalized autocorrelation functionthe same with and without the presence of ndsee Fig.
Wo(7) for attractors in Eq(4). (a) At m=6.1 and forD=0 (solid ~ 9(b)]. The component of mixing along the flow of trajecto-
line) andD =0.01 (dotted ling; (b) atm=13 for D=0 (solid line) ries is related to the divergence of the instantaneous phase
andD =0.01 (dotted line. values and thus, is determined by the temporal behavior of

YD
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50 | ‘ ] ral chaos without noisécurve 1), the value ofaé is small
(a)ww (on the given time interval it does not exceed the variation of
0 fpy Mo e the uniform phase distribution on the interyat 7; 7]) and
AD(t) 1 W increases much slower than in the other cases considered.
_50 The linear growth of the variation allows to estimate the
divergence of the instantaneous phases by using the effective
100 ‘ diffusion coefficient
25000 50000 ,
t 1 dog(t)
100 ‘ Deﬁ:i T (10)

(b)

Figure 1Q@b) illustrates the dependences®f; of the instan-
taneous phase of chaotic oscillations on the noise intensity
for both the spiral and the funnel attractor in thésBler
system(4). It is seen that in both casd3.; grows with
increasingD but for spiral chaos this growth is more signifi-

0 25600 50000 cant. This result strongly testifies tHaty is a very effective
t characteristic for diagnosing the statistical properties of a
) chaotic attractor in the presence of fluctuations.
FIG. 9. Instantaneous phase differerc@ ont for m=6.1 (a) Well-known quasihyperbolic ~ attractors in  three-

andm= 13 (b) in the noise-free caseurves 1 and in the presence

. o . dimensional continuous-time systems, such as the Lorenz at-
of noise with intensityD =0.1 (curves 2.

tractor, the Morioka-Shimizu attractp42], are attractors of

the switching type. The phase trajectory switches chaotically
the phases. The instantaneous phase of an ensemble of ifiem the neighborhood of one saddle equilibrium state to the
tially close trajectories on the spiral attractors remain veryneighborhood of another one. Such switchings are accompa-
close to each other over a long period of time, although thenied by chaotic phase changes even without noise. In this
points in the secant plane are spread over the whole attractoase the addition of noise does not change considerably the
section. In this case the relaxation to a stationary probabilitphase dynamics and, consequently, does not influence the
distribution on the whole attractor of a flow system will be rate of relaxation to the stationary distribution.

much longer than that in the Poincarap. The violation of
regular rotation of trajectories is characteristic for the funnel
attractor and leads to a nonmonotonic dependence of the
instantaneous phase on the time. The phase trajectory createswhen two identical chaotic oscillators interact, there oc-
complicated loops at nonequal time intervals that causes theurs the phenomenon of complete chaotic synchronization
value of the current phase to decrease slightly. This results if43—46. It manifests itself in a complete coincidence of cha-

a rapid divergence of the phase values of neighboring trajeatic oscillations of the partial systems. In the regime of com-
tories. The influence of noise on spiral chaos leads to similaplete synchronization a chaotic attractor belongs to the in-
effects. Figure 1@&) shows the temporal dependences of thevariant manifold U which is defined by the symmetry
variation of the instantaneous phasg on an ensemble of relationsX,=X,, whereX, and X, are vectors of the dy-
initially close trajectories for both the spiral and the funnelnamical variables of the first and the second system, respec-
attractor of systend). We observe that in both the noisy and tively. For attractors irJ, the instantaneous phase difference
the noise-free case the variation grows almost linearly on thef oscillations, introduced if41], is constant and identically
time intervals being considered. However, in the case of spiequal to zero. Such attractors will be called in phase and

V. MIXING IN COUPLED RO SSLER SYSTEMS
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FIG. 10. Characteristics of the instantaneous phase divergence of neighboring trajectories for spiraineh@d9 @nd funnel chaos
(m=13) in Egs.(4). (@ Temporal dependences of the variation of the instantaneous pHader spiral chaos aD=0 (curves 1,
D=0.1(curves 2, and for noncoherent chaos@t=0 (curves 3, D=0.1(curves 4; (b) The effective diffusion coefficier® . as a function
of the noise intensity for spiral (curves ) and noncoherercurves 2 chaos.
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FIG. 11. For systengll) at m=6.1, projections of the in-phase
(«=0.5) (a) and the out-of-phaser(=0.05) (b) attractor and en-
velopes of their autocorrelation functioris) and (d) for D=0
(solid line) and D =0.01 (dotted ling. The other parameters ase
=b=0.2 andw=0.97.

FIG. 12. For systentll) at m=13, projections of the in-phase
(«=0.5) (a) and the out-of-phaser(=0.1) (b) attractor and enve-
lopes of their autocorrelation functioris) and(d) for D=0 (solid
line) and D=0.01 (dotted ling. The other parameters ase=b
=0.2 andw=0.97.

attractors which do not lie it will be called out of phase.

An in-phase chaotic attractor is topologically similar to an
attractor of the partial system and its structure is more simple
than that of an out-of-phase attractor. Accordingly, we may
assume that the in-phase and the out-of-phase attractors have
a different rate of mixing. Moreover, they can be character-
ized by a different influence of noise on the relaxation to an
invariant measure.

To find how the synchronization effect can influence the
rate of mixing, we investigate a system of two mutually
coupled identical Resler oscillators that behave chaotically.
The parameters of both oscillators were chosen the same.
The system equations read

X1= — Y1~ 21+ a(X;— X1) + V2D &y(1),
y1= X +ay,
z,=b—mz+x,2;, (12)
Xo= — @Yy~ Z+ a(Xy = Xp) + V2D &5(1),
Yo= wXptay,,
Z,=b—Mz+X,2,,
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where a is the coupling parameter argd(t) and &,(t) are  correspondence with each other and practically do not de-
independent white noise sources. We compute the normapend on the noise intensity.
ized autocorrelation function for the dynamical variable However, there is a group of nonhyperbolic attractors of
X4 (t). spiral type for which noise strongly influences the character-
The (x;—X,) projections of in-phase and out-of-phase istics of the relaxation to a stationary distribution as well as
chaotic attractors and the envelopes of their autocorrelatiothe correlation time and practically does not change the posi-
functions both with and without noise added are shown irtive Lyapunov exponent.
Figs. 11 and 12 for spiral and noncoherent chaos in the par- The rate of mixing on nonhyperbolic attractors i is
tial oscillator of systen(11), respectively. determined not only by the positive Lyapunov exponent but
We find that in the regime of complete in-phase synchro-also depends on the instantaneous phase dynamics of chaotic
nization the correlation time is significantly larger than thatoscillations. In the regime of spiral chaos, noise causing
in the out-of-phase regime at the same value. Additionaphase changes can essentially accelerate the relaxation to a
phase changes can occur when in-phase synchronization sgationary distribution. However, for chaotic attractors with a
destroyed and the structure of the chaotic attractor gets momonregular behavior of the instantaneous phase the rate of
complicated 47]. In this case the correlation time decreasesmixing cannot be considerably affected by noise. This state-
and, consequently, the rate of mixing increases. Such behament has been checked and verified for different types of
ior of the correlation time in the synchronization regime ischaotic attractors with nonregular behavior of the instanta-
observed both for the spiral and the funnel attractor in theneous phase, namely, for quasihyperbolic attractors, nonhy-
partial system. It is worth noting that, as in the previousperbolic attractors of noncoherent type and out-of-phase cha-
cases, noise influences the correlation time only for systematic attractors in interacting systems.
with phase coherent dynamics, i.e., for coupled systems with
a spiral attractor in the regime of complete synchronization.
In cases when phase changes occur already in a purely de-
terministic case, the effect of noise appears to be minor.
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