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Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic
attractors in the presence of noise
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We study the relaxation to an invariant probability measure on quasihyperbolic and nonhyperbolic chaotic
attractors in the presence of noise. We also compare different characteristics of the rate of mixing and show
numerically that the rate of mixing for nonhyperbolic chaotic attractors can significantly change under the
influence of noise. A mechanism of the noise influence on mixing is presented, which is associated with the
dynamics of the instantaneous phase of chaotic trajectories. We also analyze how the synchronization effect
can influence the rate of mixing in a system of two coupled chaotic oscillators.
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I. INTRODUCTION

It is known that nonlinear dynamical systems can dem
strate both simple oscillations, such as periodic and qua
eriodic, and chaotic oscillations. From a viewpoint of t
rigorous theory, hyperbolic chaos is often called ‘‘tru
chaos and is characterized by a homogeneous and topo
cally stable structure@1–5#. However, strange chaotic attra
tors of dissipative systems are not, as a rule, robust hy
bolic sets. They are rather referred to as nearly hyperb
attractors, e.g., the Lorenz attractor. Nearly hyperbo
~quasihyperbolic! attractors include some nonrobust orbi
e.g., separatrix loops, but their appearances and disap
ances often do not affect the observed characteristics
chaos, such as a phase portrait, the power spect
Lyapunov exponents, and others. Dynamical systems
chaotic regime may give rise to an invariant measure
does not depend on an initial distribution and fully refle
the statistical properties of the attractor. The existence o
invariant measure has been theoretically proven for hyp
bolic and nearly hyperbolic systems@6–11#. Moreover, it has
been also established that the white noise of small inten
causes small changes of the structure of stationary distr
tion. Statistical characteristics of hyperbolic and quasihyp
bolic systems are robust to small perturbations@12–15#.

However, most chaotic attractors that we deal with in n
meric and full-scale experiments are nonhyperbolic@16–18#.
The problem of the existence of an invariant measure o
nonhyperbolic chaotic attractor involves serious difficult
because it is generally impossible to obtain a stationary p
ability distribution being independent of an initial distribu
tion. A nonhyperbolic attractor is a maximal attractor of t
dynamical system and encloses a countable set of both r
lar and chaotic attracting subsets@16,17#. Whend-correlated
Gaussian noise is added to the system, an invariant mea
on such attractors exists too@19#. But there may be seriou
problems if the external noise has a finite correlation ti
and is not Gaussian. The statistical properties of such typ
sources of noise present in nonhyperbolic systems will de
a number of coexisting attractors, their stationary measur
well as the relaxation time to this measure. The numbe
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attractors being observed and their properties will depend
both the noise statistics and noise intensity. Threshold eff
may emerge, which characterize noise-induced transiti
@18,20–22#. In the nonhyperbolic case the behavior of pha
trajectories is significantly affected by the noise while
changes only slightly in systems with hyperbolic and nea
hyperbolic chaos. Consequently, there is a principal diff
ence to the shadowing problem@13,15,23,24#.

A statistical description of noisy nonhyperbolic chao
attractors is an important and still unsolved problem of
dynamical systems theory. One of the topical problems
this direction is to study the relaxation to stationary distrib
tions in time. There are a number of fundamental questi
that have as yet unclear answers. What is a real relaxa
time of the system to a stationary distribution? Which fact
define this time? Which characteristics can quantify the
laxation time to the stationary measure? What is the role
the noise statistics and the noise intensity in regularities
the relaxation to the stationary distribution? Is there any c
nection between the relaxation process and the system
namics?

The relaxation to a stationary distribution, if the latt
exists, is described by the evolutionary equations. If
noise source is normal and uncorrelated, this process is
termined by the Fokker-Planck equation~FPE! or the
Frobenius-Perron equation. However, if the dynamical s
tem is high dimensional (N>3), the nonstationary solution
of the FPE is difficult enough to find even numerically. Thu
in our studies we use the method of stochastic differen
equations@22#. The relaxation to the invariant probabilit
measure is related to the mixing. In chaotic systems that h
an invariant probability measure@6,7,3,10,8,9# the properties
of mixing can be characterized by the Kolmogorov entro
HK @25,26# that determines the characteristic time of mixin
tmix5HK

21 . For invertible maps that satisfy the Sma
axiom, tmix defines the rate of exponential decay of the a
tocorrelation function. It has been proven that@3#

C~t!5exp~2HKt!. ~1!

This means that the correlation timetcor coincides withtmix .
©2002 The American Physical Society06-1
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At the same time, when the conditions of strong hyperbo
ity are fulfilled, the Kolmogorov entropy is defined by th
equality

HK5(
j 51

k

l j
1 , ~2!

wherel j
1 are the positive Lyapunov exponents. In more ge

eral cases, the upper bound is valid, i.e.,HK<(l j
1

@26,27,11,9#.
As has been noted above, a stationary distribution

consequently, a probability measure on a nonhyperbolic c
otic attractor without the noise are not defined. The equa
~2! is not valid for nonhyperbolic attractors. Thus, the pro
lem of the interconnection among the time of mixing, t
correlation time, and the positive Lyapunov exponent in d
ferential systems and maps still remains unresolved. Figu
shows theoretical~1! and numerical results of the autocorr
lation function for the Lozi map@28# and for the Lorenz
attractor. We observe that the experimental and theore
estimates for the Lozi map@Fig. 1~a!# are in good agreemen
with each other and thus verify the conclusions of Pes
theorem@27#. However, in the case of the Lorenz attract
@Fig. 1~b!# the experimental dependence cannot be appr
mated by formula~1! and is characterized by a smaller co
relation time. This result testifies that exponential estima
for the rate of correlations decreasing as well as for the m
ing time are not always valid for flow systems@29,30#, even
in the nearly hyperbolic case.

The mixing on a chaotic attractor of a flow system inR3

can be represented as a superposition of two processes
introduce an appropriately chosen Poincare´ section. The first
component is the mixing produced by a map on the tw
dimensional Poincare´ section, whereas the second one d

FIG. 1. Autocorrelation function~solid line! and its theoretical
approximation ~1! ~dotted line! for ~a! the Lozi map xn1151
2auxnu1yn ; yn115bxn at a51.75, b50.3 and~b! the Lorenz
attractor forr 528, s510, andb58/3.
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pends on the motion of the phase point along the trajec
outside of the Poincare´ section. The mixing in the map mus
rather satisfy Eq.~1! and be defined by the positiv
Lyapunov exponent@for example, see Fig. 1~a!#. The second
component is the mixing process along the flow of the ph
trajectories and depends on the properties of the phase
jectories motion between the consecutive returns to the P
carésection.

In this paper we study numerically the relaxation to
stationary measure on nonhyperbolic attractors of the dif
ent structure in the presence of noise. We attempt to ans
at least a part of the questions stated above. In particular
pay our attention to the following problems.

~1! The inter-relation between the relaxation rate of a c
otic system to a stationary probability distribution, the au
correlation function and the Kolmogorov entropy in the ca
of nearly hyperbolic and nonhyperbolic attractors.

~2! The influence of noise on the rate of relaxation and
the characteristics of mixing for different types of chaos.

This paper develops and supplements the main results
cently reported in Ref.@31#. The organization of the paper i
as follows. In Sec. II we introduce the models that we a
dealing with and describe the numeric methods. Section I
devoted to the study of the relaxation to a stationary dis
bution on both a quasihyperbolic and a nonhyperbolic attr
tor in the Lorenz system. In both cases we investigate
role of external noise. In Sec. IV we consider the relaxat
process for two different nonhyperbolic chaotic attractors
the Rössler system. We compare the results obtained in S
III and IV and present a mechanism of the noise influence
the rate of relaxation to a stationary distribution. In Sec.
we examine the relaxation process in a system of two in
acting Rössler oscillators. And finally, we summarize the o
tained numeric results and formulate conclusions in Sec.

II. MODELS AND NUMERIC METHODS

We investigate chaotic attractors in paradigma
continuous-time systems both in the absence and in the p
ence of noise. In particular, we consider the Lorenz sys
@32#

ẋ52s~x2y!1A2Dj~ t !,

ẏ5rx2y2xz, ~3!

ż52bz1xy,

and the Ro¨ssler oscillator@33#

ẋ52y2z1A2Dj~ t !,

ẏ5x1ay, ~4!

ż5b2mz1xz.
6-2
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PECULIARITIES OF THE RELAXATION TO AN . . . PHYSICAL REVIEW E65 036206
In both modelsj(t) is a normal white noise source1 with the
mean valuê j(t)&[0 and correlation̂ j(t)j(t1t)&[d(t),
whered() is Dirac’s function. The parameterD denotes the
noise intensity. In the Lorenz system we choose two differ
regimes, namely, a quasihyperbolic attractor (s510, b
58/3, andr 528) and a nonhyperbolic attractor (s510, b
58/3, andr 5210). For the Ro¨ssler system we fixa50.2
andb50.2 and vary the control parameterm in the interval
@4.25,13#. We integrate Eqs.~3! and~4! using a fourth-order
Runge-Kutta routine with fluctuations taken into accou
Chaotic attractors of systems~3! and~4! have been studied in
detail and are typical examples of quasihyperbolic and n
hyperbolic chaos. Thus, results obtained for Eqs.~3! and~4!
can be generalized to a wide class of dynamical syst
@34,35#.

To examine the relaxation to a stationary distribution
these systems, we analyze how points situated at an in
time in a cube of small sized around an arbitrary point of the
trajectory belonging to an attractor of the system evolve w
time. We taked50.09 for the size of this cube and fill i
uniformly with n59000 points. As time goes on, thes
points in the phase space are distributed throughout
whole attractor. To characterize the convergence to the
tionary distribution we follow the temporal evolution of th
set of points and calculate the ensemble average

x̄~ t !5E
W

p~x,t !x dx5
1

n (
i 51

n

xi~ t !. ~5!

Here,x is one of the system dynamical variables, andp(x,t)
is the probability density of the variablex at the timet, which
corresponds to the chosen initial distribution. It is known th
the phase trajectory of system~3! visits neighborhoods o
two saddle foci. In this case, when calculatingx̄(t) one may
first sum separately over points having fallen in the nei
borhood of each saddle focus, and then combine the obta
results. However, the mean value appears to approach ze
a short time interval and its further evolution is badly d
tected. To follow the relaxation in Eq.~3! we compute the
mean value when points in the neighborhood of only o
saddle focus are taken into account. In this case the re
ation to this quantity goes more slowly in time. Then w
calculate the functiong(tk),

g~ tk!5ux̄m~ tk11!2 x̄m~ tk!u, ~6!

where x̄m(tk) and x̄m(tk11) are successive extrema ofx̄(t).
Thus, g(tk) characterizes the amplitude of the mean va
oscillations~see Fig. 2!. In Eq. ~6! tk andtk11 are successive
time moments corresponding to the extrema ofx̄. The tem-
poral behavior ofg(tk) allows to judge the character and th
rate of relaxation to the probability measure on the attrac

1The noise source is added to only one equation of the dynam
systems~3! and ~4! as the inclusion of noise in all three equatio
does not change qualitatively the results but significantly reta
integration.
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We can estimate the timeT« in the course of which the
stationary probability density can be obtained with a giv
accuracy«, i.e., when the inequalityg(tk),« is fulfilled for
any t.T« , and« is small. However, this characteristic ha
some disadvantages, one of which is thatT« depends on the
initial magnitude of the phase space element that we foll
Our numeric calculations have shown that for the attract
under study eitherg(tk) or its envelope can be approximate
by the exponential lawg(tk)'exp(2t/a). The exponenta
denotes the time, in which the function graph decreasese
times, and characterizes the rate of mixing. The value oa
does not depend on the size of the initial phase space ele
but significantly increases with the increasing noise inten
D. This quantity appears to be more suitable for estimat
the rate of mixing.

We also calculate the maximal Lyapunov exponent~LE!
l1 of a chaotic trajectory on an attractor. For hyperbo
attractors inR3 l1 is positive, has the same value for a
typical phase trajectories and represents an averaged ch
teristic of the rate of mixing. In the nonhyperbolic case, t
maximal LE, as well as other characteristics computed al
a single trajectory, may depend on the choice of this traj
tory. However, since a ‘‘computer noise’’ is inevitabl
present in numeric experiments, such a dependence ca
be always detected. Besides, we also compute the nor
ized autocorrelation function of steady-state oscillatio
x(t),

C~t!5U ^x~ t !x~ t1t!&2 x̄~ t !x̄~ t1t!

A@^x2~ t !&2 x̄2~ t !#@^x2~ t1t!&2 x̄2~ t1t!#
U .

~7!

To make some figures more informative and compact,
stead ofg(tk) andC(t) we plot ~where it is necessary! their
envelopesg0(tk) andC0(t), respectively.

III. RELAXATION TO A PROBABILITY MEASURE
IN THE LORENZ SYSTEM

We start with considering chaotic attractors in the Lore
system and are interested in knowing as to how addi
noise influences the relaxation to their stationary distrib
tions. Figure 3 shows the behavior ofg0(tk) for both quasi-
hyperbolic and nonhyperbolic chaotic attractors of Eqs.~3!
with and without noise added. We find that for the Lore
attractor noise does not significantly influence the relaxat

al

s

FIG. 2. Schematic illustration of the calculation ofg(tk) Eq. ~6!.
6-3
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rate @Fig. 3~a!#. However, we observe a quite different sit
ation for the nonhyperbolic attractor. There the rate of rel
ation is strongly affected by noise@Figs. 3~b! and 3~c!# and
the characteristic timea decreases more than twice under t
influence of noise~see Table I!. Besides, the time of relax
ation to the stationary distribution of the nonhyperbolic
tractor @Figs. 3~b,c!# is abruptly increased as compared w
that one for the quasihyperbolic attractor@Fig. 3~a!#.

If the characteristic time of mixing satisfies the relati
tmix;1/l1, then we may assume thatT« , a and 1/l1 are
directly proportional to each other. To simplify our comp
tations ofT« anda as functions of the system~3! parameter,
we use a one-dimensional map that simulates the return
in a Poincare section of the Lorenz attractor~ @36#!,

xn115H 12buxnua, xnP@21,0!

0, xn50

211buxnua, xnP~0,1#,

~8!

FIG. 3. g0(tk) for chaotic attractors in the Lorenz system~3!. ~a!
For r 528 andD50 ~solid line!, andD50.01 ~dotted line!; ~b! for
r 5210 andD50 ~thick line!, and for r 5210 andD50.01 ~thin
line!.
03620
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wherea51/b10.001. Figures 4~a,b! shows the dependence
of T« and 1/l on the control parameterb in the region of
positivel. It is seen that both functions are quite similar. F
illustrative purposes we also plotT« versus 1/l in Fig. 4~c!.
There points are arranged along a straight line whose s
defines the coefficient of proportionalityK. Thus, the rate of
mixing in the model map is unambiguously determined
the l1. This result is in complete agreement with theore
cally proven statements for hyperbolic one-to-one tw
dimensional maps, although map~8! does not generally be
long to this class.

As we have shown for the nonhyperbolic attractor in s
tem ~3!, the rate of mixing predicted by means ofa can

FIG. 4. For the model map~8!, ~a! T« as a function of the
control parameterb; ~b! 1/l versusb, and~c! 1/l as a function of
T« .
TABLE I. The exponenta, the largest LEl1 and the correlation timetcor for attractors in the Lorenz
system (s510,b58/3) and the Ro¨ssler system (a50.2,b50.2).

Lorenz system Ro¨ssler system

r D a l1 tcor m D a l1 tcor

28 0 0.056 0.92 0.4 6.1 0 470 0.082 9500
28 0.01 0.056 0.92 0.4 6.1 0.001 330 0.081 5500
210 0 165 0.86 25000 6.1 0.1 110 0.081 200
210 0.01 78 0.86 13000 13 0 40 0.11 40

13 0.01 45 0.11 40
6-4
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PECULIARITIES OF THE RELAXATION TO AN . . . PHYSICAL REVIEW E65 036206
considerably change under the influence of noise. Now
are going to check whether the other characteristics of
mixing rate, such as the LE and the correlation time, w
also depend on noise perturbations. For the same cha
attractors in the Lorenz system we compute the largest LEl1
and estimate the normalized autocorrelation funct
C(t), t5t22t1, of the dynamical variablex(t) for differ-
ent noise intensitiesD. The values ofl1 andtcor are given in
Table I. We find that for both types of chaotic attractors t
LE does not depend, within the calculation accuracy, on
noise intensity. The autocorrelation function of the quasi
perbolic attractor is practically not affected by noise@see
curves 1 and 2 in Fig. 5~a!#. However, in the regime of a
nonhyperbolic attractor it decreases more rapidly in the p
ence of noise@see curves in Figs. 5~a,b!#. Our calculations
show that the correlation timetcor for the quasihyperbolic
chaos does not depend on the noise level, whereas fo
nonhyperbolic attractor it decreases almost twice under
influence of noise~see Table I!.

Thus, on the one hand, the maximal LE of both chao
attractors remains almost unchanged in the presence of n
On the other hand, while for the quasihyperbolic attrac
tcor and a are practically insensitive to fluctuations, the
characteristics for the nonhyperbolic attractor change con
erably under the influence of noise.

IV. RELAXATION TO A STATIONARY DISTRIBUTION
IN THE RÖ SSLER SYSTEM: MECHANISM OF

THE EFFECT OF NOISE ON THE RATE OF MIXING

In the preceding section we have analyzed two differ
chaotic attractors in the Lorenz system and found a q
different effect of noise on the relaxation process. In t
section we try to explain a mechanism of this difference.

FIG. 5. Envelopes of the normalized autocorrelation funct
C0(t) for attractors in system~3!. ~a! r 528 andD50 ~solid line!,
and D50.01 ~dotted line!; ~b! r 5210, D50 ~solid line!, and D
50.01 ~dotted line!.
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Since the statistical characteristics of hyperbolic a
quasihyperbolic attractors are known to be stable to no
perturbations@7,13–15,19#, we can predict that characteris
tics of the mixing rate for this type of attractor will be inse
sitive to the influence of noise. On the contrary, in a regi
of nonhyperbolic attractor the noise affects significantly t
chaotic system behavior. Thus, in this case noise can cha
essentially the mixing characteristics. To verify this sta
ment we analyze nonhyperbolic attractors of different typ
The nonhyperbolic attractor in the Lorenz system represe
a frequently encountered type of nonhyperbolic attracto
called spiral attractor@37,34,38#. It is usually generated
through an infinite sequence of period-doubling bifurcatio
A chaotic attractor realizing in the Ro¨ssler system~4! at fixed
a5b50.2 and in the parameterm interval @4.25,8.5# serves
as a well-known example of a spiral attractor. The pha
trajectory on the spiral attractor rotates with a high regula
around one or several saddle foci. The autocorrelation fu
tion is oscillating and the power spectrum exhibits narro
band peaks corresponding to the mean rotation frequency
harmonics, and subharmonics. By virtue of these proper
spiral chaos is called phase coherent@33,39,40#.

The chaotic attractor of Eq.~4! is qualitatively changing
as the parameterm increases. In the interval 8.5,m,13
there occurs a nonhyperbolic attractor of noncoherent ty
called funnel attractor@37,34#. Phase trajectories on the fun
nel attractor make complicated loops around a saddle fo
and thus, demonstrate a nonregular rotation behavior. Co
quently, the autocorrelation function of the noncohere
chaos decreases much rapidly than that in the coherent c
and the power spectrum does not already contain sh
peaks.

The calculations performed formP@4.25,7.5# ~spiral
chaos! and for mP@8.5,13# ~noncoherent chaos! allow to
assume that an invariant probability measure exists for
parameter values considered. All the effects being obser
for each type of attractor in Eq.~4! are qualitatively pre-
served when the parameterm is varied. In our numeric simu-
lation we fix m56.1 for the spiral attractor andm513 for
the funnel attractor.

Figure 6 shows the typical behavior ofg0(t) for both the
spiral and the funnel attractor of the Ro¨ssler system. We find
that, as in the case of the spiral attractor in the Lorenz s
tem, the noise significantly influences the rate of mixing
the regime of spiral attractor in the Ro¨ssler system. The
value of a is strongly decreasing for the increasing noi
intensity @see Table I and Fig. 6~a!#.

We find a quite different situation for the funnel attracto
Noncoherent chaos is practically insensitive to noise per
bations. Botha and l1 do not significantly change whe
noise is added to Eqs.~4!. At the same time, it is well known
that noncoherent chaos exhibits a close similarity to rand
processes. This fact can be verified, e.g., by means of
autocorrelation functionC(t) for the spiral and the funne
attractors in system~4! ~Fig. 7!. Our numerical experiments
show that the correlation times are essentially different
these two chaotic regimes~see Table I!; without noise they
differ by two orders. On the one hand, in the case of cohe
chaos the correlation time decreases dramatically in the p
6-5
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VADIM S. ANISHCHENKO et al. PHYSICAL REVIEW E 65 036206
ence of noise@Fig. 7~a! and Table I!. On the other hand, the
autocorrelation function for the funnel attractor in the det
ministic case practically coincides with that in the presen
of noise@Fig. 7~b!#. Hence, noncoherent chaos, which is no
hyperbolic, demonstrates some property of hyperbolic ch
i.e., ‘‘dynamical stochasticity’’ turns out to be much strong
than that imposed from an external~additive! one @7#. This
experimental result is interesting and requires a more
tailed consideration. It is also worth noting another finding
our simulations. In the regime of spiral chaos the rate

FIG. 6. g0(tk) for attractors in the Ro¨ssler system~4!. ~a! For
the spiral attractor (m56.1) for D50 ~curve 1!, D50.001~curve
2!, andD50.1 ~curve 3!; ~b! for the funnel attractor (m513) for
D50 ~solid line! and forD50.01 ~dotted line!.

FIG. 7. Envelopes of the normalized autocorrelation funct
C0(t) for attractors in Eq.~4!. ~a! At m56.1 and forD50 ~solid
line! andD50.01 ~dotted line!; ~b! at m513 for D50 ~solid line!
andD50.01 ~dotted line!.
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mixing is not uniquely determined by the largest LE b
depends strongly on the noise intensity. This result does
match theoretical conclusions@25,26# obtained for hyper-
bolic chaos in two-dimensional maps.

We have found that the positive LE is weakly sensitive
fluctuations~see Fig. 8!, and rather grows not much with th
increasing noise intensity, whereas in certain cases the
relation time changes considerably under the influence
noise. Thus, the positive Lyapunov exponents are not
unique characteristic responsible for the mechanism of m
ing on a nonhyperbolic attractor. We suppose that the es
tial effect of noise on relaxation to the stationary distributi
may be associated with peculiarities of the phase trajec
dynamics in the neighborhood of an unstable equilibriu
state. Since the trajectory rotates almost regularly on the
ral attractor, the relaxation process appears to be very lo
The addition of noise to the system destroys the rela
regularity of the trajectory and, consequently, the rate
mixing significantly increases.

It is known that for chaotic oscillations one can introdu
the notion of instantaneous amplitude and phase@41#. The
instantaneous phase characterizes the rotation of a traje
around a saddle focus. System~4! is of such type because th
trajectory in the (x-y) projection rotates around the uniqu
saddle focus located very near to the origin. To quantify
trajectory dynamics in this case, the instantaneous phase
be introduced as follows:

F~ t !5arctan
y~ t !

x~ t !
1pn~ t !, ~9!

wheren(t)50,1,2, . . . is thenumber of intersections of the
phase trajectory with the planex50.

We consider the instantaneous phase differenceDn
5F2(tn)2F1(tn) of two initially close trajectories of sys
tem ~4! as a function of the time. We again find that in th
regime of spiral chaos@Fig. 9~a!#, noise drastically change
the temporal behavior of the phase differencesDF. When
D50, the phase difference varies slowly, with the except
of fine-scaled changes within6p. However, the addition of
noise leads to changes ofDF much larger than 2p. Thus,
mixing is strongly enhanced under the influence of noise
is important to emphasize that phase changes are very ty
for the non-coherent attractor already in a purely determ
istic case. Therefore, the variations ofDn are qualitatively
the same with and without the presence of noise@see Fig.
9~b!#. The component of mixing along the flow of trajecto
ries is related to the divergence of the instantaneous ph
values and thus, is determined by the temporal behavio

FIG. 8. For the Ro¨ssler system,l1 on the spiral~triangles! and
the funnel~circles! attractor as functions of the noise intensityD.
6-6
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the phases. The instantaneous phase of an ensemble o
tially close trajectories on the spiral attractors remain v
close to each other over a long period of time, although
points in the secant plane are spread over the whole attra
section. In this case the relaxation to a stationary probab
distribution on the whole attractor of a flow system will b
much longer than that in the Poincare´ map. The violation of
regular rotation of trajectories is characteristic for the fun
attractor and leads to a nonmonotonic dependence of
instantaneous phase on the time. The phase trajectory cr
complicated loops at nonequal time intervals that causes
value of the current phase to decrease slightly. This resul
a rapid divergence of the phase values of neighboring tra
tories. The influence of noise on spiral chaos leads to sim
effects. Figure 10~a! shows the temporal dependences of
variation of the instantaneous phasesF

2 on an ensemble o
initially close trajectories for both the spiral and the funn
attractor of system~4!. We observe that in both the noisy an
the noise-free case the variation grows almost linearly on
time intervals being considered. However, in the case of

FIG. 9. Instantaneous phase differenceDF on t for m56.1 ~a!
andm513 ~b! in the noise-free case~curves 1! and in the presence
of noise with intensityD50.1 ~curves 2!.
03620
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e
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ral chaos without noise~curve 1!, the value ofsF
2 is small

~on the given time interval it does not exceed the variation
the uniform phase distribution on the interval@2p;p#) and
increases much slower than in the other cases conside
The linear growth of the variation allows to estimate t
divergence of the instantaneous phases by using the effe
diffusion coefficient

Deff5
1

2

dsF
2 ~ t !

dt
. ~10!

Figure 10~b! illustrates the dependences ofDeff of the instan-
taneous phase of chaotic oscillations on the noise inten
for both the spiral and the funnel attractor in the Ro¨ssler
system ~4!. It is seen that in both casesDeff grows with
increasingD but for spiral chaos this growth is more signifi
cant. This result strongly testifies thatDeff is a very effective
characteristic for diagnosing the statistical properties o
chaotic attractor in the presence of fluctuations.

Well-known quasihyperbolic attractors in thre
dimensional continuous-time systems, such as the Loren
tractor, the Morioka-Shimizu attractor@42#, are attractors of
the switching type. The phase trajectory switches chaotic
from the neighborhood of one saddle equilibrium state to
neighborhood of another one. Such switchings are accom
nied by chaotic phase changes even without noise. In
case the addition of noise does not change considerably
phase dynamics and, consequently, does not influence
rate of relaxation to the stationary distribution.

V. MIXING IN COUPLED RO¨ SSLER SYSTEMS

When two identical chaotic oscillators interact, there o
curs the phenomenon of complete chaotic synchroniza
@43–46#. It manifests itself in a complete coincidence of ch
otic oscillations of the partial systems. In the regime of co
plete synchronization a chaotic attractor belongs to the
variant manifold U which is defined by the symmetr
relationsX15X2, whereX1 and X2 are vectors of the dy-
namical variables of the first and the second system, res
tively. For attractors inU, the instantaneous phase differen
of oscillations, introduced in@41#, is constant and identically
equal to zero. Such attractors will be called in phase a
FIG. 10. Characteristics of the instantaneous phase divergence of neighboring trajectories for spiral chaos (m56.1) and funnel chaos
(m513) in Eqs. ~4!. ~a! Temporal dependences of the variation of the instantaneous phasesF

2 for spiral chaos atD50 ~curves 1!,
D50.1 ~curves 2!, and for noncoherent chaos atD50 ~curves 3!, D50.1 ~curves 4!; ~b! The effective diffusion coefficientDeff as a function
of the noise intensityD for spiral ~curves 1! and noncoherent~curves 2! chaos.
6-7
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attractors which do not lie inU will be called out of phase
An in-phase chaotic attractor is topologically similar to
attractor of the partial system and its structure is more sim
than that of an out-of-phase attractor. Accordingly, we m
assume that the in-phase and the out-of-phase attractors
a different rate of mixing. Moreover, they can be charact
ized by a different influence of noise on the relaxation to
invariant measure.

To find how the synchronization effect can influence t
rate of mixing, we investigate a system of two mutua
coupled identical Ro¨ssler oscillators that behave chaotical
The parameters of both oscillators were chosen the sa
The system equations read

FIG. 11. For system~11! at m56.1, projections of the in-phas
(a50.5) ~a! and the out-of-phase (a50.05) ~b! attractor and en-
velopes of their autocorrelation functions~c! and ~d! for D50
~solid line! andD50.01 ~dotted line!. The other parameters area
5b50.2 andv50.97.
03620
le
y
ave
r-
n

e.

ẋ152vy12z11a~x22x1!1A2Dj1~ t !,

ẏ15vx11ay1 ,

ż15b2mz11x1z1 , ~11!

ẋ252vy22z21a~x12x2!1A2Dj2~ t !,

ẏ25vx21ay2 ,

ż25b2mz21x2z2 ,

FIG. 12. For system~11! at m513, projections of the in-phase
(a50.5) ~a! and the out-of-phase (a50.1) ~b! attractor and enve-
lopes of their autocorrelation functions~c! and ~d! for D50 ~solid
line! and D50.01 ~dotted line!. The other parameters area5b
50.2 andv50.97.
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wherea is the coupling parameter andj1(t) and j2(t) are
independent white noise sources. We compute the norm
ized autocorrelation function for the dynamical variab
x1(t).

The (x12x2) projections of in-phase and out-of-pha
chaotic attractors and the envelopes of their autocorrela
functions both with and without noise added are shown
Figs. 11 and 12 for spiral and noncoherent chaos in the
tial oscillator of system~11!, respectively.

We find that in the regime of complete in-phase synch
nization the correlation time is significantly larger than th
in the out-of-phase regime at the same value. Additio
phase changes can occur when in-phase synchronizatio
destroyed and the structure of the chaotic attractor gets m
complicated@47#. In this case the correlation time decreas
and, consequently, the rate of mixing increases. Such be
ior of the correlation time in the synchronization regime
observed both for the spiral and the funnel attractor in
partial system. It is worth noting that, as in the previo
cases, noise influences the correlation time only for syst
with phase coherent dynamics, i.e., for coupled systems
a spiral attractor in the regime of complete synchronizati
In cases when phase changes occur already in a purely
terministic case, the effect of noise appears to be mi
These results are in complete agreement with those ones
viously obtained for a single oscillator.

VI. CONCLUSIONS

In this paper we have shown that for nearly hyperbo
attractors the characteristics of the mixing rate are in g
.

h.
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correspondence with each other and practically do not
pend on the noise intensity.

However, there is a group of nonhyperbolic attractors
spiral type for which noise strongly influences the charac
istics of the relaxation to a stationary distribution as well
the correlation time and practically does not change the p
tive Lyapunov exponent.

The rate of mixing on nonhyperbolic attractors inR3 is
determined not only by the positive Lyapunov exponent
also depends on the instantaneous phase dynamics of ch
oscillations. In the regime of spiral chaos, noise caus
phase changes can essentially accelerate the relaxation
stationary distribution. However, for chaotic attractors with
nonregular behavior of the instantaneous phase the rat
mixing cannot be considerably affected by noise. This sta
ment has been checked and verified for different types
chaotic attractors with nonregular behavior of the instan
neous phase, namely, for quasihyperbolic attractors, non
perbolic attractors of noncoherent type and out-of-phase c
otic attractors in interacting systems.
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