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Influence of noise on statistical properties of nonhyperbolic attractors
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We analyze effects of bounded white and colored noise on nonhyperbolic chaotic attractors in two-
dimensional invertible maps. It is shown that first the nonhyperbolic nature is kept even in the presence of
strong noise, but secondly already due to weak noise some properties of nonhyperbolic chaos can become
similar to those of hyperbolic and almost hyperbolic chaos. We also estimate the stationary probability measure
of noisy nonhyperbolic attractors. For this purpose two different methods for calculating the probability density
are applied and the obtained results are compared in detail.

PACS number~s!: 05.45.2a, 05.10.Gg
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I. INTRODUCTION

Small random perturbations are inevitably present in
dynamical systems. The degree and the character of
influence mainly depend on the peculiarities of a system
der study, in particular, on its nonlinear properties and ch
acteristics of its stability and robustness@1–11,13–20#. If the
system’s dynamics is complicated enough, then the influe
of fluctuations can lead to various and sometimes unexpe
effects. Noise can increase the degree of disorder in a
tem, including a transition to chaotic dynamics@2–4#, or, on
the contrary, can cause the system’s behavior to be m
ordered@5–7,12,13#. It was established numerically that un
der the influence of noise attractors of dissipative dynam
systems can undergo different bifurcations, which can s
nificantly change their structure@8–10#.

Stochastic nonlinear problems are of fundamental
practical importance. They can be treated as a natural ex
sion of the nonlinear dynamics problems. The presence
noise in a system requires a transition to a statistical desc
tion. There are two main approaches of studying stocha
systems@16–18,37#. The first oneis based on solving sto
chastic equations~SE’s! and is also called Langevin’
method. Each particular solution of SE’s, even with the sa
initial state, produces a new realization of a random proc
By this means, one is able to obtain a statistical ensembl
a great number of realizations and to find its intrinsic sta
tical characteristics. In practice, time averaging along
single, long enough realization is often used assuming
the process is ergodic.The second approachconsists in solv-
ing evolution equations for the probability measure, cal
the Chapman-Kolmogorov equation, kinetic equation, or
Fokker-Planck equation. However the process in a sys
should be at least Markovian that imposes certain requ
ments on the noise sources. For the process to be Marko
random kicks must be statistically independent. In this c
the Chapman-Kolmogorov equation holds. If the noise p
sesses Gaussian properties, the process is diffusive,
therefore, for the probability density we can write th
Fokker-Planck equation. Under appropriate definitions
noise sources, the method of SE’s and the method of ev
tion equations must yield the equivalent statistical desc
tion of the system@16–19#.
PRE 621063-651X/2000/62~6!/7886~8!/$15.00
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Of special interest is the problem of statistical charact
istics of dynamical chaos and of the role of fluctuations
chaotic systems@15,19,21–25#. For systems with chaotic dy
namics of hyperbolic type, the transition to a statistical d
scription is possible already in a purely deterministic ca
e.g., without noise@23–25#. This means that the stationar
solution of evolution equation for the probability density a
lows the presence of the limitD→0, whereD is the noise
intensity, and there is the possibility of deducing an expr
sion for the probability measure in a purely determinis
case. As shown in@23,25#, small fluctuations (D!1) in hy-
perbolic systems cause small changes of the structure o
probability measure. So-called quasihyperbolic~almost hy-
perbolic! attractors, such as the Lozi attractor and the Lore
attractor@26,27#, behave in a similar manner. Almost hype
bolic attractors enclose nonrobust singular trajectories,
example, separatrix loops in the Lorenz attractor. Nevert
less, these attractors, as well as hyperbolic ones, do not
tain stable periodic orbits. The characteristics of quasihyp
bolic attractors, measured in numerical experiments,
robust relative to small perturbations of the evolution ope
tor. Particularly, there is a rigorous proof for the existence
the probability measure of the Lorenz attractor without no
@24#. The system’s own dynamics turns out to be much str
ger than that imposed from outside by external noise@23#.

However, the majority of chaotic dynamical systems de
onstrate nonhyperbolic chaos@10,26,27#. In the phase space
these dissipative dynamical systems correspondnonhyper-
bolic chaotic attractors. They enclose the limit subsets o
stable and unstable chaotic1 and periodic trajectories. With
this, basins of attraction of a set of attractors are, as a r
fractal. They can be vanishingly narrow and are often di
cult to detect in numerical experiments. In such systems
effect of noise can play a significant role. In@11# it was
shown that the mean distance between a noisy orbit and
noiseless nonhyperbolic attractor appears to be significa
larger than that in the hyperbolic case and depends on
information dimension of the attractor. It is well known th
in systems with nonhyperbolic attractors noise can ind

1Chaotic subsets are assumed to be stable according to Pois
7886 ©2000 The American Physical Society
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PRE 62 7887INFLUENCE OF NOISE ON STATISTICAL . . .
various phase transitions@28–30#. When Gaussian nois
sources are added to a system, basins of attraction o
system’s attractors can merge. As a result, a unified stat
ary probability density appears being independent of the
tial state@31#. However, the statistical description of nonh
perbolic chaos encounters principal difficulties. In gene
case, there is no stationary probability measure on nonhy
bolic chaotic attractors without noise, being independen
the initial distribution. In this case the continuous limit tra
sition D→0 does not exist for the probability density o
noisy nonhyperbolic systems@31#. Moreover, the probability
characteristics of nonhyperbolic chaos are very sensitiv
even slightest changes of the system parameters@32,10,33#.

In this paper we analyze effects of bounded noise on n
hyperbolic chaotic systems. We numerically study typi
two-dimensional invertible maps. It is known that invertib
maps can be considered as model systems qualitatively
scribing Poincare´ maps in the section of certain thre
dimensional continuous-time systems. The purpose of
study is to elucidate~as far as possible in numerical expe
ments! the following issues.

~1! Does a principal difference between hyperbolic a
nonhyperbolic chaos hold if a system is obscured by noi

~2! How do bounded white and colored noise perturb
tions influence the probability characteristics of nonhyp
bolic chaos, particularly, the properties of the invariant pro
ability measure of an attractor?

To evaluate the probability density on a noisy nonhyp
bolic attractor, two different methods are applied. The fi
one operates with a single, long enough trajectory of stoch
tic equations of a system under study. The second appro
consists in solving the evolution equation for the probabi
density. In this connection the problem which we also a
dress is in what degree the results for the probability den
obtained using both methods are equivalent? And how
nificant can the error be connected with correlations in
sequence of random perturbations modeled by a special c
puter program~a source of pseudorandom numbers!?

In Sec. II of this paper we describe the models and
methods which we use. Section III is concerned with
study of some properties of nonhyperbolic attractors in
presence of noise. In Sec. IV we present our results for
probability density on nonhyperbolic attractors of tw
dimensional invertible maps in the presence of boun
noise. In this section we compare the results of two num
cal algorithms for estimating the probability density. We a
analyze the influence of correlations in a sequence of ran
perturbations on the steady state probability density. In S
V we present noise-induced transitions in a two-dimensio
map demonstrating nonhyperbolic chaos. Our conclusi
are given in Sec. VI.

II. MODELS AND METHODS

In the present work we analyze statistical characteris
of evolutionary processes which are described by nonlin
discrete invertible mapsF with additive noise:

xn115F~xn!1D~xn!jn , xn , jnPRe2. ~1!

In the stochastic equation~SE! ~1!, xn is a two-dimensional
vector of the system state,F is a nonlinear deterministic
all
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function defining a map,jn is bounded noise, andD denotes
the matrix of noise intensities. The noise sourcesjn

1 andjn
2

are chosen to be independent and represent white noise
formly distributed in the interval@20.5,0.5#. The matrixD is
assumed to be constant and has the following eleme
D115D225D, D125D2150. Thus, independent additiv
noise sources of the same intensity are added to both e
tions of the system~1!. It should be noted that in the case
uniformly distributed noiseD determines both the varianc
of the noise and the maximal strength of random kicks p
turbing the system.

Here, we study the Henon map@34#

xn115a2xn
21yn , yn115bxn ~2!

for a51.06, b50.3, and the cubic map

xn115@~a21!xn2axn
3#expS 2xn

2

b D 1yn , yn115cxn

~3!

for a52.95, b50.5, andc50.3. For these parameter va
ues, we have numerically verified that both maps have n
hyperbolic chaotic attractors. To check whether the cha
attractor of the system is nonhyperbolic, we use a numer
procedure for calculating the anglesf between the stable
and the unstable direction along a chaotic trajectory. T
algorithm enables to establish a homoclinic tangency
tween the manifolds@35#. A chaotic attractor is nonhyper
bolic if there are arbitrary close to zero anglef values@33#.

We explore the influence of noise on some characteris
of nonhyperbolic chaos using the Henon map which w
proved to be a typical nonhyperbolic system@36#. In particu-
lar, for Eqs.~2! we analyze the distribution of anglesf be-
tween the manifolds in the presence of noise and the lar
Lyapunov exponent under variation of the system con
parameter and the noise intensity.

The main point in our study is to estimate the probabil
distribution on nonhyperbolic attractors of two-dimension
invertible maps in the presence of bounded noise. We
consider the Henon map and apply two different approac
briefly described in the Introduction. According to the fir
approach we compute a chaotic sequencexn by iterating sto-
chastic equations~1! n5109 times from a set of different
initial conditions x(0) and for given noise intensitiesD.
Then we estimate the probability measurePx* ( i , j ) as nor-
malized residence times of the trajectory in a square elem
( i , j ) on the phase plane. Thus, we obtain the probabi
measure by means of the SE’s method with the implicit
sumption that the process is ergodic.

The second method is based on solving the evolut
equation for the probability density. Taking into account th
random perturbations are statistically independent in c
secutive time moments, we can consider the processxn
5x(n) to be Markovian. In this case the probability dens
of xn obeys the Chapman–Kolmogorov equation@37#:

px~xn11!5E
W

pj„D
21~xn!@xn112 f ~xn!#…

udetD~xn!u
px~xn!dxn ,

~4!
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wherepj is the probability density of noise,D21 is the ma-
trix inverse to the matrix of noise intensities. The integra
taken over all possiblexn values. Setting initial probability
densitypx(x0) and implementing successively the transfo
mation ~4!, one can see how the probability density of t
processxn evolves in time. Our calculations have shown th
to estimate the stationary probability density by solving E
~4!, the number of iterations 100,n,140 is quite sufficient.
But in practice this procedure requires significant compu
time.

III. PROPERTIES OF NONHYPERBOLIC ATTRACTORS
OF TWO-DIMENSIONAL INVERTIBLE MAPS

IN THE PRESENCE OF NOISE

We start with exploring the influence of noise on the d
tribution of anglesf between the stable and unstable dire
tions of a trajectory on a chaotic attractor in the Henon m
~2!. We fix a51.06 andb50.3. First we compute the prob
ability distribution of anglesf for the Henon attractor in the
noise-free case. The results shown in Fig. 1 by the das
line clearly indicate theP(f).0 for close to zero anglef
values. This implies that the chaotic attractor of Eqs.~2! is
nonhyperbolic. Such an angle probability distribution w
proved to be typical for chaotic attractors in the Henon m
Now, we add noise of intensityD50.28 to both equations o
Eq. ~2!. It is evident that by definition we cannot speak abo
stable and unstable manifolds in SE’s. However, as follo
from numerical experiments, we can identify the averag
directions of stability and instability and calculate the an
f between them. The graph pictured in Fig. 1 by the so
line represents the angle probability distribution in the pr
ence of additive noise in Eqs.~2!. Comparing both graphs
the additive noise in the Henon map does not qualitativ
change the probability distribution of anglesf between the
manifolds. Most important, the probability of close to ze
angle values is still strongly larger than zero. Thus, ev
strong noise perturbations do not alter the nature of the
tractor, that is, the nonhyperbolic attractor is not transform
into a hyperbolic one.

As we have already mentioned, one of the peculiarities
nonhyperbolic chaos is its nonrobustness under small pe
bations of the system. For this reason, even with arbitr

FIG. 1. The angle probability distributionP(f) for the nonhy-
perbolic attractor of the Henon map ata51.06, b50.3 without
noise ~dashed line! and in the presence of noise with intensityD
50.28 ~solid line!. The anglef is plotted in degrees.
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small control parameter variations, a set of bifurcations c
be observed resulting in switchings between different cha
and regular regimes. The dependence of a certain quan
tive characteristic of the regime under observation on
control parameter is found to be a strongly rugged n
smooth function. To illustrate this we now estimate the la
est Lyapunov exponent~LE! for the map~2!. In Fig. 2~a! the
largest LEl of the noise-free map is plotted as a function
the control parametera. It can be seen that when the param
eter a is varied over a rather small range, the behavior
chaotic for most values ofa, but we find also regions with
negative Lyapunov exponent values which correspond
stable periodic windows. However, adding weak noiseD
50.002) to Eqs.~2! can smooth the dependencel(a) by
eliminating most of the narrow periodic windows. As se

FIG. 2. Largest Lyapunov exponent of Eqs.~2! as a function of
the control parametera for b50.3 without noise~a! and in the
presence of additive noise withD50.002~b! andD50.01 ~c!.
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from Figs. 2~b! and 2~c!, with increasing noise intensity th
dependence of the largest LE on the parametera is becoming
more and more smooth and similar to that for quasihyp
bolic chaos, which is known to be always a smooth posit
definite function of a system parameter. We also estimate
measureP2 of regular regimes~periodic windows! in the
given parametera range, which is shown in Fig. 3 as a fun
tion of the noise intensityD. To quantify P2 we sum the
lengths of all intervals corresponding to regular regimes
then calculate the ratio of this sum to the total length of
considered range of parametera variation.

It is evident that other averaged over an attractor cha
teristics behave in a similar manner. Therefore, althou
noise perturbations do not influence the angle distribut
between stable and unstable directions of a chaotic tra
tory, i.e., they do not change the nonhyperbolic nature of
attractor, the noise can significantly affect some of its ch
acteristics. As a result, the nonhyperbolic attractor beco
more similar in its properties to a hyperbolic one.

IV. EXPLORATION OF THE PROBABILITY DENSITY ON
NONHYPERBOLIC ATTRACTORS IN THE PRESENCE

OF NOISE

We begin our numerical experiments by consider
again the Henon map~2! with a51.06 andb50.3. The non-
hyperbolic chaotic attractor generated by Eqs.~2! for the
given parameter values consists of four parts, also ca
bands. In this case a representative point visits regularly
ing four iterations each part of the chaotic attractor. T
presence of additive noise leads to connected bifurcati
i.e., the attractor bands merge. For example, for the n
intensityD50.05, there already exists a two-band attract
We now construct the probability distributionPxy( i , j ) on
this chaotic attractor by applying the two methods descri
above. The results are shown in Fig. 4.Pxy( i , j ) denotes the
probability of finding a representative point in a small co
ering box of edge length« centered at the point (xi ,yj ). In
the computation, the value of« does not exceed 1022, and
thus the equalityPxy( i , j )5«2pxy(xi ,yj ) is valid, wherepxy
is the probability density. In addition, the probabili
Pxy( i , j ) being of the order 10212 and less is put to be equa
to zero. The steady state probability distributionPxy( i , j ),
where i and j denote a partition element from the«-grid, is
periodically nonstationary with period 2. When calculati

FIG. 3. For the Henon map (b50.3), the measureP2 of regular
regimes in the parametera range@1.3,1.8# is depicted as a function
of the noise intensityD.
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the probability distributionPxy* ( i , j ) from a single long
enough noisy time series, we obtain the distribution wh
consists of two parts, each having a joint probability equa
1/2. The shape of each of these parts completely confo
with that of the distributionPxy( i , j ) being considered in the
relevant time moments. It is worth noting the following. L
the attractor of a map arising in the section of a cert
continuous-time system consist of a few bands. In this c
the attractor can be characterized by a periodically non
tionary probability distribution. Nevertheless, the probabil
distribution on the attractor of the original continuous-tim
system will be stationary.

With increasing noise intensity another connected bif
cation takes place resulting in the merging of the remain
two attractor bands. Thus, the noise eliminates the perio
non-stationarity of the process, and a merged one-band
tractor occurs in the system~2!. Setting the noise intensity
D50.28, we solve numerically stochastic equations~1! for
the map~2! and the corresponding evolution equation for t
probability density. Figure 5~a! shows the stationary prob
ability distribution Pxy( i , j ) calculated on the basis of Eq
~4!. The corresponding probability distributionPxy* ( i , j ),
constructed from the SE’s, is presented in Fig. 5~b!. As fol-
lows from the obtained results, in timen>100 the time-
invariant probability distribution is established on th

FIG. 4. Fora51.06, b50.3 in Eqs.~2!, the probability distri-
bution on the chaotic attractor atD50.05 ande5231023. ~a! The
steady probability distribution calculated from Eq.~4!; ~b! the time-
averaged probability distribution obtained from the correspond
stochastic equations.
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merged chaotic attractor of the Henon map. Our numeri
experiments have shown that the probability distributio
does not depend on the choice of initial distribution. Com
paring Figs. 5~a! and 5~b!, it can be seen that the probability
distribution, obtained from a single time series of lengthn
5109 of the SE’s, is the same as that one computed from

FIG. 5. Statistical characteristics of the Henon map~2! for a
51.06,b50.3, D50.28, ande51022. ~a! The stationary probabil-
ity distribution calculated from Eq.~4!; ~b! the time-averaged dis-
tribution obtained from Eqs.~2! with white noise sources;~c! the
probability distribution obtained by solving Eqs.~2! with indepen-
dent color bounded noise sources whose autocorrelation functio
shown in Fig. 6 by curve 3.
al

-

e

evolution equation. Our calculations have shown that fon
.120 both distributions coincide within a round-off error.

As already mentioned, Eq.~4! holds when noise kicksjn
perturbing the system under study in the time momentsn and
(n11) are statistically independent. The probability dist
butions obtained by means of the two methods described
be in good agreement only in the case when in numer
simulation of stochastic systems random perturbations re
sent practically white noise. Noise sourcesj1,2(t), which we
use to estimate the probability distributions shown in Fi
4~b! and 5~b!, satisfy this requirement. Their normalized a
tocorrelation function is presented in Fig. 6~curve 1!. If the
noise sources are less ‘‘good,’’ then the probability distrib
tion obtained from the solution of SE’s may be considera
different from the solution of Eq.~4!. Figure 5~c! illustrates
the probability distribution obtained by processing a reali
tion of Eqs.~2! with colored noise sources. The autocorre
tion function for j1(t) and j2(t) is plotted in Fig. 6~curve
3!. As before noise sourcesj1,2 are chosen to be uniformly
distributed in the interval@20.5,0.5# and with intensityD
50.28. The difference between the distributions shown
Figs. 5~a! and 5~c! is noticeable by estimation.

It is of interest to compare the convergence rate of the
methods used for calculating the probability distribution a
to estimate the error related to correlations in a source
pseudorandom numbers, which is utilized in numerical
periments. The divergence of these two numerical pro
dures can be estimated by considering the magnitude^d&,
which reads

^d&5
^ l 2&

sxy
2

, ~5!

where ^ l 2& is the mean square of the differenc2

@Pxy( i , j ,n)2Pxy* ( i , j )#2, and sxy
2 is the variance of the

steady state distributionPxy( i , j ). In our computations, we
use three different kinds of random perturbations, nam
j1,2

1 (t), j1,2
2 (t), andj1,2

3 (t). Their normalized autocorrelation
functions are shown in Fig. 6. The first noise source~1!
corresponds to white noise, and the two other~2 and 3! rep-
resent colored noise with correlation timetc52 and tc

2Here we compute the arithmetic mean over all partition eleme

is

FIG. 6. Autocorrelation functions of different bounded noi
sources used in numerical calculations. The corresponding cor
tion time istc

150 ~white noise!, tc
252, andtc

3520.
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520, respectively. The correlation time is defined as the t
in the course of which the autocorrelation function decrea
in e times. With this, random noise sources added to the
and the second equation of map~2! are assumed to be iden
tical, uncorrelated and uniformly distributed in@20.5,0.5#.
Their intensity is fixed atD50.28. The calculation result
for ^d& are shown in Fig. 7. For the first kind of noise~white
noise!, ^d& becomes constant forn5120 and constitutes les
than 0.05% of the variance~curve 1!. This fact testifies a
good agreement between the results obtained using the
different techniques for estimating the probability distrib
tion. Hence, one may conclude that the SE’s method and
solution of evolution equation yield equivalent results for t
typical nonhyperbolic system~2!, at least starting from a
certain noise intensityD. Curves 2 and 3 drawn in Fig.
reflect the divergence of the two methods when introduc
colored noise sources 2 and 3 to SE’s, respectively. For
noise of the second kind~2!, ^d& settles at the level corre
sponding to 1.5% of the variancesxy

2 , and for the noise
sources 3 at the level 10%. The latter value of^d& indicates
a significant divergence of the two methods applied. For
value, there are strong correlations between sequential s
of random sources used in numerical experiments.

We have also analyzed nonhyperbolic chaos in the cu
map ~3!, in which a noise-induced crisis of separatrix ta
gency is realized. For this system we fixa52.95, b50.5,
c50.3. These parameter values correspond to the exist
of two symmetric chaotic attractors in the map~3!. Noise
sourcesj1,2(t) are taken to be white, uncorrelated and u
formly distributed in @20.5,0.5#. Our calculations have
shown that for insufficient crisis noise intensityD50.15,
each of the two attractors possesses its own stationary p
ability distribution independent of a given initial distribution
For the noise intensityD50.4, there occurs a crisis of sep
ratrix tangency. As a result, a merged chaotic attracto
realized in Eqs.~3!. For this case we have also calculat
probability distributions using both approaches. Figure 8~a!
shows the stationary probability distribution obtained
solving integral equation~4! for map~3!. The time-averaged
distribution calculated from the solution of SE’s is presen
in Fig. 8~b!. It is seen that the merged chaotic attractor
Eqs. ~3! is characterized by the invariant probability dist

FIG. 7. Estimate of the divergence betweenPxy( i , j ,n) and
Pxy* ( i , j ) when utilizing different bounded noise sources with t
same noise intensityD50.28. Curves 1, 2, and 3 correspond to t
noise sources with autocorrelation functions shown in Fig. 6
curves 1, 2, and 3.
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bution. Our computations clearly indicate that both method
for estimating the probability measure also yield the sam
results for the case of another kind of noise-induced phas
transitions.

Therefore, to estimate the steady state probability distr
bution on a nonhyperbolic noisy attractor, one can emplo
the ordinary calculation procedure, i.e. to use a single suffi
ciently long trajectory from stochastic equations. Periodi
nonstationarity of the process may manifest itself only in
getting simultaneously the probability distribution for all
parts of a many-band attractor with a general normalizatio
to unity.

V. NOISE-INDUCED TRANSITIONS IN NONHYPERBOLIC
SYSTEMS

The results described above indicate the possibility of ap
plying the SE’s method~1! to estimate numerically a steady
state probability measure on chaotic attractors of nonhype
bolic systems. This conclusion is of great practical impor
tance by virtue of several reasons. First, as compared to t
method based on Eq.~4!, the SE’s method requires essen-
tially less computer time. Secondly, the method~4! becomes
extremely difficult to use in cases when multistability~the
presence of a large number of attracting subsets in the pha
space! is well expressed, and an arbitrary low noise leve

y

FIG. 8. Probability distributions calculated for the cubic map~3!
at a52.95, b50.5, c50.3, D50.4, ande51022 by solving Eq.
~4! ~a!, and from stochastic equations~b!.
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FIG. 9. Probability distributions of the coexisting attractors in map~6! for a50.78, g50.2876 in the absence of noise~a!–~c! and in the
presence of additive noise with intensityD5631026 ~d!.
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dis-
enables to change the probability measure. The decrea
the noise intensity when applying the algorithm~4! causes a
significant increase of the calculation time. Ultimately, th
method does not yield truly reliable results. The SE’s meth
does not depend on the noise intensity that is undoubt
important in numerical simulation.

For illustrative purposes we consider a non-invertible s
tem in the form of two coupled logistic maps being a typic
example of a discrete system with nonhyperbolic propert

xn11512axn
21g~yn2xn!1Dj1~n!,

yn11512ayn
21g~xn2yn!1Dj2~n!, ~6!

wherej1,2(n) are independent bounded white noise sour
uniformly distributed in the interval@20.5, 0.5#. For the
system parameter valuesa50.78, g50.2876, andD50
two symmetric chaotic and one regular attractors are fo
in numerical experiments. The influence of noise of very l
intensity D5631026 already leads to the formation of
single attractor. This case can be treated as a noise-ind
transition. We compute the probability measure by solv
the stochastic equations~6!. The calculation results ar
shown in Fig. 9. Note that the use of method~4! with refer-
ence to system~6! proved to be impossible due to a ve
small noise intensity.
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VI. CONCLUSIONS

In the paper we have discussed the effect of boun
white and colored noise on statistical properties of nonhyp
bolic chaotic attractors of two-dimensional invertible map
It has been established that noise perturbations introduce
both equations of the system under study do not affect
probability distribution of anglesf between the stable an
unstable directions along a chaotic trajectory. This fact i
plies that an important property of the chaotic dynamics d
not change under the influence of noise, i.e., a nonhyperb
attractor is not transformed into a hyperbolic one, and v
versa.

However, our numerical calculations have shown that
the presence of noise some properties of nonhyperb
chaos can be quite similar to those of hyperbolic and qu
hyperbolic chaos. This statement can be motivated, for
ample, by smoothing of the dependence of the largest L
punov exponent on a control parameter.

We have also demonstrated that for bounded noise
relatively high intensity acting on chaotic regimes of nonh
perbolic systems, it is possible to obtain the steady state
tionary probability distribution being invariant to the choic
of the initial distribution. Our numerical experiments ha
shown that the SE’s approach is appropriate for estima
the steady state probability measure on noisy nonhyperb
attractors. The presence of correlations in a sequenc
states of the noise source utilized in computations may
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tort the obtained result. However, the error will be significa
only in the case if the autocorrelation function of this no
source decreases slowly enough~the correlation time mus
be of order 20 characteristic time intervals of the system!.

Our numerical results for two-dimensional maps~2! and
~3! have provided evidence that the SE’s method can
reliably used for calculating the steady state probabi
measure on chaotic attractors of nonhyperbolic thr
dimensional differential systems.

From a theoretical viewpoint, in the presence of Gauss
noise of finite intensity the stationary probability measure
nonhyperbolic attractors always exists, is unique and d
not depend on the initial conditions@19#. However, in nu-
merical experiments the probability measure, as a rule
estimated over a finite time interval being sometimes sign
cantly less than possible times of transitions between dif
ent attracting subsets of a nonhyperbolic attractor. For
reason the following effects may take place both in the pr
ence of Gaussian noise and in the case of bounded n
ys
i,
.

n,

tt

.

at

v.

L.

.

at

s,
d

t

e
y
-

n
f
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-
r-
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s-
se.

Assume that a system under study has a nonhyperbolic
tractor which in the absence of noise enclosesm attracting
subsets. Noise added to the system reduces them to (m2n)
.1 subsets, each possessing its own probability distribu
and its own basin of attraction. Then the selection of
(m2n) probability distributions observed in numerical e
periments strongly depends on the choice of initial con
tions.
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