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Influence of noise on statistical properties of nonhyperbolic attractors
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We analyze effects of bounded white and colored noise on nonhyperbolic chaotic attractors in two-
dimensional invertible maps. It is shown that first the nonhyperbolic nature is kept even in the presence of
strong noise, but secondly already due to weak noise some properties of nonhyperbolic chaos can become
similar to those of hyperbolic and almost hyperbolic chaos. We also estimate the stationary probability measure
of noisy nonhyperbolic attractors. For this purpose two different methods for calculating the probability density
are applied and the obtained results are compared in detail.

PACS numbds): 05.45~-a, 05.10.Gg

[. INTRODUCTION Of special interest is the problem of statistical character-
istics of dynamical chaos and of the role of fluctuations in
Small random perturbations are inevitably present in allchaotic systemfl5,19,21-2% For systems with chaotic dy-
dynamical systems. The degree and the character of themamics of hyperbolic type, the transition to a statistical de-
influence mainly depend on the peculiarities of a system unscription is possible already in a purely deterministic case,
der study, in particular, on its nonlinear properties and chare.g., without nois§23—25. This means that the stationary
acteristics of its stability and robustndds-11,13-20 If the  solution of evolution equation for the probability density al-
system’s dynamics is complicated enough, then the influencews the presence of the limid —0, whereD is the noise
of fluctuatio_ns can I_ead to various and someti_mes un_expectqﬁtensity, and there is the possibility of deducing an expres-
effects. Noise can increase the degree of disorder in a sysjon for the probability measure in a purely deterministic
tem, including a transition to chaotic dynam[@_r4], or, 0N case. As shown ifi23,25, small fluctuationsP<1) in hy-
the contrary, can cause the system’s behavior to be morgerholic systems cause small changes of the structure of the
ordered[5—7,12,13. It was established nym_erlc_ally that Un- hrobability measure. So-called quasihyperbdtmost hy-
der the influence of noise attractors of 0_I|SS|pat|v_e dynam"?aﬂ)erbolid attractors, such as the Lozi attractor and the Lorenz
systems can undergp difierent biturcations, which can SIg%ittractor[ZG 27, behave in a similar manner. Almost hyper-
nificantly change their structuf@&-10]. : i : . .
. . olic attractors enclose nonrobust singular trajectories, for
Stochastic nonlinear problems are of fundamental anc? . .
o example, separatrix loops in the Lorenz attractor. Neverthe-
practical importance. They can be treated as a natural exten- :
ss, these attractors, as well as hyperbolic ones, do not con-

sion of the nonlinear dynamics problems. The presence of - . . .
y P b ain stable periodic orbits. The characteristics of quasihyper-

noise in a system requires a transition to a statistical descri% lic atract di ical : i
tion. There are two main approaches of studying stochasti olic_aftractors, measured In numerical experiments, are
robust relative to small perturbations of the evolution opera-

systems[16—18,37. The first oneis based on solving sto- ; X X .
y s 1 g tor. Particularly, there is a rigorous proof for the existence of

chastic equations(SE’s) and is also called Langevin's h babilit fthe L tract hout noi
method. Each particular solution of SE’s, even with the sam € probability m’easure ortne Lorenz attractor without noise
24]. The system’s own dynamics turns out to be much stron-

initial state, produces a new realization of a random proces

By this means, one is able to obtain a statistical ensemble &er than that |mpos'ed.from outs@e by ext.ernal npEg.

a great number of realizations and to find its intrinsic statis- However, the majority of chaotic dynamical systems dem-

tical characteristics. In practice, time averaging along gnstrate n(_)nhyperbohc c_ha{>3;0,26,22. In the phase space

single, long enough realization is often used assuming th ese d'SS'Pat'Ve dynamical systems corrgspnndhyper-
olic chaotic attractors They enclose the limit subsets of

the process is ergodithe second approaatonsists in solv- ; o . . .
ing evolution equations for the probability measure, Calledstable and unstable chadtiand periodic trajectories. With

the Chapman-Kolmogorov equation, kinetic equation, or th his, basins of attraction of a set of attractors are, as a rule,

Fokker-Planck equation. However the process in a syste actal. They can be vgmshmgly_narrow and are often diffi-

should be at least Markovian that imposes certain require(-:u“ to detec_t in numerical experiments, In such systems the
ffect of noise can play a significant role. [al] it was

ments on the noise sources. For the process to be Markoviaﬂh that th dist bet ; bit and th
random kicks must be statistically independent. In this casgoWn that the mean distance between a noisy orbit and the

the Chapman-Kolmogorov equation holds. If the noise pos[1oiseless nonhyperbolic attractor appears to be significantly

sesses Gaussian properties, the process is diffusive, arlarger th_an that In _the hyperbolic case a_\nd depends on the
therefore, for the probability density we can write the information dimension of the attractor. It is well known that

Fokker-Planck equation. Under appropriate definitions oim systems with nonhyperbolic attractors noise can induce

noise sources, the method of SE’s and the method of evolu-
tion equations must yield the equivalent statistical descrip-
tion of the systenj16—-19. IChaotic subsets are assumed to be stable according to Poisson.
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various phase transitiong28—30. When Gaussian noise function defining a mapg, is bounded noise, arld denotes

sources are added to a system, basins of attraction of gl matrix of noise intensities. The noise sourépsnd £2
system’s attractors can merge. As a result, a unified stationy e chosen to be independent and represent white noise uni-
ary probability density appears being independent of the inizo 1y distributed in the intervdl—0.5,0.5. The matrixD is
tial state[31]. However, the statistical description of nonhy- assumed to be constant and has the following elements:

perbolic chz_ios encounters prmmp_gl difficulties. In generab11=D22=D, D;,=D,,=0. Thus, independent additive
case, there is no stationary probability measure on nonhypep—

bolic chaofi ith e being ind d oise sources of the same intensity are added to both equa-
olic cf aot!c gttrgctors W't. out noise, €ing incepen ent ofjons of the systenfl). It should be noted that in the case of
the initial distribution. In this case the continuous limit tran-

" : o X uniformly distributed noiseD determines both the variance
sition D—0 does not exist for the probability density of

: . 2 of the noise and the maximal strength of random kicks per-
noisy nonhyperbolic systeni81]. Moreover, the probability turbing the system.
charactgrlstlcs of nonhyperbolic chaos are very sensitive to Here, we study the Henon még4]
even slightest changes of the system param¢8240,33.

In this paper we analyze effects of bounded noise on non-
hyperbolic chaotic systems. We numerically study typical
two-dimensional invertible maps. It is known that invertible _ _ .
maps can be considered as model systems qualitatively d(t',-qr a=1.06, b=0.3, and the cubic map
scribing Poincaremaps in the section of certain three- 2
dimen;‘ional co_ntinuous-time systems. The purpose of our .. =[(a— 1)xn—ax§]exp<_—xn Yo, Yni1=CX,
study is to elucidatéas far as possible in numerical experi- b
ment$ the following issues. 3

(1) Does a principal difference between hyperbolic and
nonhyperbolic chaos hold if a system is obscured by noisefor a=2.95, b=0.5, andc=0.3. For these parameter val-

(2) How do bounded white and colored noise perturba-Ues, we have numerically verified that both maps have non-
tions influence the probability characteristics of nonhyperhyperbolic chaotic attractors. To check whether the chaotic
bolic chaos, particularly, the properties of the invariant prob-attractor of the system is nonhyperbolic, we use a numerical
ability measure of an attractor? procedure for calculating the angles between the stable

To evaluate the probabi”ty density on a noisy nonhyper.and the unstable direction along a chaotic trajectory. This
bolic attractor, two different methods are applied. The firstalgorithm enables to establish a homoclinic tangency be-
one operates with a single, long enough trajectory of stochagween the manifold$35]. A chaotic attractor is nonhyper-
tic equations of a system under study. The second approadi®lic if there are arbitrary close to zero anghevalues[33].
consists in solving the evolution equation for the probability We explore the influence of noise on some characteristics
density. In this connection the problem which we also ad-0f nonhyperbolic chaos using the Henon map which was
dress is in what degree the results for the probability densitproved to be a typical nonhyperbolic systé&]. In particu-
obtained using both methods are equivalent? And how sigar, for Egs.(2) we analyze the distribution of angles be-
nificant can the error be connected with correlations in gween the manifolds in the presence of noise and the largest
sequence of random perturbations modeled by a special corhyapunov exponent under variation of the system control
puter progrania source of pseudorandom numb@rs parameter and the noise intensity.

In Sec. Il of this paper we describe the models and the The main point in our study is to estimate the probability
methods which we use. Section Il is concerned with thedistribution on nonhyperbolic attractors of two-dimensional
study of some properties of nonhyperbolic attractors in thénvertible maps in the presence of bounded noise. We first
presence of noise. In Sec. IV we present our results for theonsider the Henon map and apply two different approaches
probability density on nonhyperbolic attractors of two- briefly described in the Introduction. According to the first
dimensional invertible maps in the presence of bounde@pproach we compute a chaotic sequexchy iterating sto-
noise. In this section we compare the results of two numerichastic equationgl) n=10° times from a set of different
cal algorithms for estimating the probability density. We alsoinitial conditions x(0) and for given noise intensitieB.
analyze the influence of correlations in a sequence of randoffihen we estimate the probability measw®g(i,j) as nor-
perturbations on the steady state probability density. In Seanalized residence times of the trajectory in a square element
V we present noise-induced transitions in a two-dimensiona(i,j) on the phase plane. Thus, we obtain the probability
map demonstrating nonhyperbolic chaos. Our conclusionseasure by means of the SE’s method with the implicit as-

Xn+1:a_xﬁ+ynv Yn+1= DX, 2

are given in Sec. VI. sumption that the process is ergodic.
The second method is based on solving the evolution
Il. MODELS AND METHODS equation for the probability density. Taking into account that

o ~random perturbations are statistically independent in con-
of evolutionary processes which are described by nonlinear y(ny) to be Markovian. In this case the probability density

discrete invertible mapBk with additive noise: of x, obeys the Chapman—Kolmogorov equatj&]:

Xnr1=F(Xp) +D(Xp) €y X, anRez- (1)

(X ):f pg(Dil(Xn)[XnJrl_f(Xn)]) (X )dX
In the stochastic equatiofBE) (1), x, is a two-dimensional Pned)= | |detD(xy)] Pl X)X
vector of the system statd; is a nonlinear deterministic 4
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FIG. 1. The angle probability distributioR(¢) for the nonhy-
perbolic attractor of the Henon map at1.06, b=0.3 without
noise (dashed ling and in the presence of noise with intensity
=0.28(solid ling). The angleg is plotted in degrees.

wherep; is the probability density of nois® ! is the ma-

trix inverse to the matrix of noise intensities. The integral is
taken over all possible, values. Setting initial probability

density p,(Xo) and implementing successively the transfor-
mation (4), one can see how the probability density of the
process, evolves in time. Our calculations have shown that
to estimate the stationary probability density by solving Eg.

(4), the number of iterations 180n<<140 is quite sufficient. 25 ¥ ry : ‘

. . . 3 A . . 5 1.6 1.7 1.8
But in practice this procedure requires significant computer a
time.

I1l. PROPERTIES OF NONHYPERBOLIC ATTRACTORS
OF TWO-DIMENSIONAL INVERTIBLE MAPS

IN THE PRESENCE OF NOISE 1t
We start with exploring the influence of noise on the dis- A /V\/V—/
0

tribution of anglesy between the stable and unstable direc- ¥ 0~ ~=—=~-~-=> === === ===+
tions of a trajectory on a chaotic attractor in the Henon map
(2). We fixa=1.06 andb=0.3. First we compute the prob- L i
ability distribution of anglesp for the Henon attractor in the
noise-free case. The results shown in Fig. 1 by the dashed
line clearly indicate thé®(¢)>0 for close to zero angle 23 14 15 16 17 18
values. This implies that the chaotic attractor of E@.is a
nonhyperbolic. Such an angle probability distribution was
proved to be typical for chaotic attractors in the Henon map. FIG. 2. Largest Lyapunov exponent of E¢®) as a function of
Now, we add noise of intensity =0.28 to both equations of the control parametea for b=0.3 without noise(a) and in the
Eq.(2). It is evident that by definition we cannot speak aboutPresence of additive noise wifh=0.002(b) andD=0.01(c).
stable and unstable manifolds in SE’s. However, as follows
from numerical experiments, we can identify the averagedgmall control parameter variations, a set of bifurcations can
directions of stability and instability and calculate the anglebe observed resulting in switchings between different chaotic
¢ between them. The graph pictured in Fig. 1 by the solidand regular regimes. The dependence of a certain quantita-
line represents the angle probability distribution in the prestive characteristic of the regime under observation on the
ence of additive noise in Egq$2). Comparing both graphs, control parameter is found to be a strongly rugged non-
the additive noise in the Henon map does not qualitativelysmooth function. To illustrate this we now estimate the larg-
change the probability distribution of anglésbetween the est Lyapunov exponerLE) for the map(2). In Fig. 2a) the
manifolds. Most important, the probability of close to zerolargest LEN of the noise-free map is plotted as a function of
angle values is still strongly larger than zero. Thus, everthe control paramete. It can be seen that when the param-
strong noise perturbations do not alter the nature of the atktera is varied over a rather small range, the behavior is
tractor, that is, the nonhyperbolic attractor is not transformedhaotic for most values ad, but we find also regions with
into a hyperbolic one. negative Lyapunov exponent values which correspond to
As we have already mentioned, one of the peculiarities ostable periodic windows. However, adding weak noife (
nonhyperbolic chaos is its nonrobustness under small pertur=0.002) to Eqgs.(2) can smooth the dependenkéa) by
bations of the system. For this reason, even with arbitrargliminating most of the narrow periodic windows. As seen
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FIG. 3. For the Henon map& 0.3), the measurB ™~ of regular
regimes in the parametarrange[ 1.3,1.9 is depicted as a function
of the noise intensity.

(b)

N

from Figs. Zb) and Zc¢), with increasing noise intensity the
dependence of the largest LE on the paramaistbecoming
more and more smooth and similar to that for quasihyper-  os.
bolic chaos, which is known to be always a smooth positive
definite function of a system parameter. We also estimate th ™
measureP~ of regular regimegperiodic windows$ in the P o4l
given parametea range, which is shown in Fig. 3 as a func-
tion of the noise intensityp. To quantify P~ we sum the
lengths of all intervals corresponding to regular regimes anc
then calculate the ratio of this sum to the total length of the
considered range of parameterariation.

It is evident that other averaged over an attractor charac
teristics behave in a similar manner. Therefore, althougt 4 0.5 X
noise perturbations do not influence the angle distribution
between stable and unstable directions of a chaotic trajec- FIG. 4. Fora=1.06, b=0.3 in Eqgs.(2), the probability distri-
tory, i.e., they do not change the nonhyperbolic nature of th@ution on the chaotic attractor Bt=0.05 ande=2x10"3. (a) The
attractor, the noise can significantly affect some of its charsteady probability distribution calculated from E4); (b) the time-
acteristics. As a result, the nonhyperbolic attractor becomesveraged probability distribution obtained from the corresponding

0.24

1.5

more similar in its properties to a hyperbolic one. stochastic equations.
IV. EXPLORATION OF THE PROBABILITY DENSITY ON the probability distributionP3(i,j) from a single long
NONHYPERBOLIC ATTRACTORS IN THE PRESENCE enough noisy time series, we obtain the distribution which
OF NOISE consists of two parts, each having a joint probability equal to

1/2. The shape of each of these parts completely conforms

We begin our numerical experiments by consideringwith that of the distributiorP,,(i,j) being considered in the
again the Henon maf2) with a=1.06 ando=0.3. The non- relevant time moments. It is worth noting the following. Let
hyperbolic chaotic attractor generated by E¢®. for the the attractor of a map arising in the section of a certain
given parameter values consists of four parts, also calledontinuous-time system consist of a few bands. In this case
bands. In this case a representative point visits regularly duthe attractor can be characterized by a periodically nonsta-
ing four iterations each part of the chaotic attractor. Thetionary probability distribution. Nevertheless, the probability
presence of additive noise leads to connected bifurcationglistribution on the attractor of the original continuous-time
i.e., the attractor bands merge. For example, for the noissystem will be stationary.
intensity D =0.05, there already exists a two-band attractor. With increasing noise intensity another connected bifur-
We now construct the probability distributioB,(i,j) on  cation takes place resulting in the merging of the remaining
this chaotic attractor by applying the two methods describedwo attractor bands. Thus, the noise eliminates the periodic
above. The results are shown in Fig.P4,(i,j) denotes the non-stationarity of the process, and a merged one-band at-
probability of finding a representative point in a small cov-tractor occurs in the systei(2). Setting the noise intensity
ering box of edge length centered at the pointx(,y;). In  D=0.28, we solve numerically stochastic equatigh)sfor
the computation, the value @f does not exceed 16, and the map(2) and the corresponding evolution equation for the
thus the equalit)ny(i,j)=sszy(xi ,Yj) is valid, wherep,,  probability density. Figure @ shows the stationary prob-
is the probability density. In addition, the probability ability distribution P,(i,j) calculated on the basis of Eq.
P,y(i,]) being of the order 10'2 and less is put to be equal (4). The corresponding probability distributioR} (i, ),
to zero. The steady state probability distributiBq(i,j), constructed from the SE's, is presented in Fig)5As fol-
wherei andj denote a partition element from tlaegrid, is  lows from the obtained results, in tim@=100 the time-
periodically nonstationary with period 2. When calculatinginvariant probability distribution is established on the
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FIG. 6. Autocorrelation functions of different bounded noise
sources used in numerical calculations. The corresponding correla-
tion time is 7-=0 (white nois¢, 72=2, andr>= 20.

evolution equation. Our calculations have shown thatrfor
>120 both distributions coincide within a round-off error.

As already mentioned, E¢4) holds when noise kick§,
perturbing the system under study in the time momarasd
(n+1) are statistically independent. The probability distri-
butions obtained by means of the two methods described can
be in good agreement only in the case when in numerical
simulation of stochastic systems random perturbations repre-
sent practically white noise. Noise sour@gs(t), which we
use to estimate the probability distributions shown in Figs.
4(b) and 8b), satisfy this requirement. Their normalized au-
tocorrelation function is presented in Fig(&urve 1. If the
noise sources are less “good,” then the probability distribu-
tion obtained from the solution of SE’s may be considerably
different from the solution of Eq4). Figure Kc) illustrates
the probability distribution obtained by processing a realiza-
tion of Egs.(2) with colored noise sources. The autocorrela-
tion function for &,(t) and &,(t) is plotted in Fig. 6(curve
3). As before noise sources , are chosen to be uniformly
distributed in the interval —0.5,0.5 and with intensityD
=0.28. The difference between the distributions shown in
Figs. 5a) and Fc) is noticeable by estimation.

It is of interest to compare the convergence rate of the two
methods used for calculating the probability distribution and

to estimate the error related to correlations in a source of

A ‘ pseudorandom numbers, which is utilized in numerical ex-
periments. The divergence of these two numerical proce-
dures can be estimated by considering the magnitiatie
which reads

|2

@=2, ®

FIG. 5. Statistical characteristics of the Henon ni@p for a Oxy
=1.06,b=0.3,D=0.28, ande=10 2. (a) The stationary probabil- ] ]
ity distribution calculated from Eq4); (b) the time-averaged dis- Where (1%) is the mean square of the differeAce
tribution obtained from Eqgs(2) with white noise sourcedr) the [ Pyy(i,j,n)— P:y(i 1% and cr)z(y is the variance of the
probability distribution obtained by solving Eq) with indepen-  steady state distributioR,(i,j). In our computations, we
dent color bounded noise sources whose autocorrelation function igse three different kinds of random perturbations, namely,
shown in Fig. 6 by curve 3. E1 A1), € A1), and&} (t). Their normalized autocorrelation
aflunctions are shown in Fig. 6. The first noise soufde
corresponds to white noise, and the two otf®and 3 rep-

resent colored noise with correlation time=2 and

merged chaotic attractor of the Henon map. Our numeric
experiments have shown that the probability distribution
does not depend on the choice of initial distribution. Com-
paring Figs. Ba) and 3b), it can be seen that the probability

distribution, obtained from a single time series of length

=10 of the SE’s, is the same as that one computed from the ?Here we compute the arithmetic mean over all partition elements.
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FIG. 7. Estimate of the divergence betweBq(i,j,n) and X : 1 05

Pjy(i,j) when utilizing different bounded noise sources with the
same noise intensit® =0.28. Curves 1, 2, and 3 correspond to the
noise sources with autocorrelation functions shown in Fig. 6 by (b)
curves 1, 2, and 3.

=20, respectively. The correlation time is defined as the time

in the course of which the autocorrelation function decrease

in e times. With this, random noise sources added to the firs __ =

and the second equation of mé&}) are assumed to be iden- P 1

tical, uncorrelated and uniformly distributed [ir-0.5,0.5.

Their intensity is fixed aD =0.28. The calculation results 0.5+

for (d) are shown in Fig. 7. For the first kind of noiéehite

noise, (d) becomes constant far= 120 and constitutes less 0

than 0.05% of the variancé&urve 1. This fact testifies a

good agreement between the results obtained using the tv

different techniques for estimating the probability distribu-

tion. Hence, one may conclude that the SE’s method and the

solution of evolution equation yield equivalent results for the  FIG. 8. Probability distributions calculated for the cubic nta8p

typical nonhyperbolic systeni2), at least starting from a ata=2.95,b=0.5,¢=0.3, D=0.4, ande=10"? by solving Eq.

certain noise intensity. Curves 2 and 3 drawn in Fig. 7 (4) (&, and from stochastic equationis).

reflect the divergence of the two methods when introducing

colored noise sources 2 and 3 to SE’s, respectively. For theution. Our computations clearly indicate that both methods

noise of the second kin2), (d) settles at the level corre- for estimating the probability measure also yield the same

sponding to 1.5% of the varianaeg . and for the noise results for the case of another kind of noise-induced phase

sources 3 at the level 10%. The latter valug df indicates ~ transitions.

a significant divergence of the two methods applied. For this Therefore, to estimate the steady state probability distri-

value, there are strong correlations between sequential stategtion on a nonhyperbolic noisy attractor, one can employ

of random sources used in numerical experimentsl the Ordinary calculation procedure, i.e. to use a Single suffi-
We have also analyzed nonhyperbolic chaos in the cubigiently long trajectory from stochastic equations. Periodic

map (3), in which a noise-induced crisis of separatrix tan-nonstationarity of the process may manifest itself only in

gency is realized. For this system we fix2.95, b=0.5, getting simultaneously the probability distribution for all

c=0.3. These parameter values correspond to the existen@@rts of a many-band attractor with a general normalization

of two symmetric chaotic attractors in the mép). Noise 1O unity.

sourcesé; f(t) are taken to be white, uncorrelated and uni-

formly “distributed in [~0.5,0.9. Our calculations have ; \o|sg INDUCED TRANSITIONS IN NONHYPERBOLIC

shown that for insufficient crisis noise intensiy=0.15, SYSTEMS

each of the two attractors possesses its own stationary prob-

ability distribution independent of a given initial distribution. ~ The results described above indicate the possibility of ap-

For the noise intensit{p = 0.4, there occurs a crisis of sepa- plying the SE’s methodl) to estimate numerically a steady

ratrix tangency. As a result, a merged chaotic attractor istate probability measure on chaotic attractors of nonhyper-

realized in Eqgs(3). For this case we have also calculatedbolic systems. This conclusion is of great practical impor-

probability distributions using both approaches. Figufa 8 tance by virtue of several reasons. First, as compared to the

shows the stationary probability distribution obtained bymethod based on Ed4), the SE's method requires essen-

solving integral equatiof¥) for map(3). The time-averaged tially less computer time. Secondly, the methdilbecomes

distribution calculated from the solution of SE’s is presentedextremely difficult to use in cases when multistabilithe

in Fig. 8b). It is seen that the merged chaotic attractor ofpresence of a large number of attracting subsets in the phase

Egs. (3) is characterized by the invariant probability distri- space is well expressed, and an arbitrary low noise level

1.5+
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FIG. 9. Probability distributions of the coexisting attractors in nf@for «=0.78, y=0.2876 in the absence of noi&®—(c) and in the
presence of additive noise with intensiy=6x 10" ° (d).

enables to change the probability measure. The decrease of VI. CONCLUSIONS

the noise intensity when applying the algoritli#) causes a .
significant increase of the calculation time. Ultimately, this In the paper we have discussed the effect of bounded

method does not yield truly reliable results. The SE's method//hite and colored noise on statistical properties of nonhyper-

does not depend on the noise intensity that is undoubtedl olic chaotic attractors of two-dimensional invertible maps.
important in numerical simulation. t has been established that noise perturbations introduced in

For illustrative purposes we consider a non-invertible sysPOth equations of the system under study do not affect the
tem in the form of two coupled logistic maps being a typical probability distribution of angleg between the stable and

example of a discrete system with nonhyperbolic propertiest!nStable directions along a chaotic trajectory. This fact im-
plies that an important property of the chaotic dynamics does

not change under the influence of noise, i.e., a nonhyperbolic

2 . . . .
Xn+1= 1—aXy+ y(Yn—Xp) +Dé&r(n), attractor is not transformed into a hyperbolic one, and vice
versa.
However, our numerical calculations have shown that in
Yne1=1—aypt y(Xa—Yn) +Déx(n), (6)

the presence of noise some properties of nonhyperbolic
chaos can be quite similar to those of hyperbolic and quasi-
where &, (n) are independent bounded white noise sourcesiyperbolic chaos. This statement can be motivated, for ex-
uniformly distributed in the interval —0.5, 0.5. For the ample, by smoothing of the dependence of the largest Lya-
system parameter values=0.78, y=0.2876, andD=0 punov exponent on a control parameter.

two symmetric chaotic and one regular attractors are found We have also demonstrated that for bounded noise of
in numerical experiments. The influence of noise of very lowrelatively high intensity acting on chaotic regimes of nonhy-
intensity D=6x10"° already leads to the formation of a perbolic systems, it is possible to obtain the steady state sta-
single attractor. This case can be treated as a noise-inducédnary probability distribution being invariant to the choice
transition. We compute the probability measure by solvingof the initial distribution. Our numerical experiments have
the stochastic equation€s). The calculation results are shown that the SE’s approach is appropriate for estimating
shown in Fig. 9. Note that the use of meth@d with refer-  the steady state probability measure on noisy nonhyperbolic
ence to systeni6) proved to be impossible due to a very attractors. The presence of correlations in a sequence of
small noise intensity. states of the noise source utilized in computations may dis-
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tort the obtained result. However, the error will be significantAssume that a system under study has a nonhyperbolic at-
only in the case if the autocorrelation function of this noisetractor which in the absence of noise enclosesattracting
source decreases slowly enou@he correlation time must subsets. Noise added to the system reduces themnton(
be of order 20 characteristic time intervals of the system >1 subsets, each possessing its own probability distribution
Our numerical results for two-dimensional ma@s and  and its own basin of attraction. Then the selection of the
(3) have provided evidence that the SE’'s method can bém—n) probability distributions observed in numerical ex-
reliably used for calculating the steady state probabilityperiments strongly depends on the choice of initial condi-
measure on chaotic attractors of nonhyperbolic threetions.
dimensional differential systems.
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