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Phase-frequency synchronization in a chain of periodic oscillators in the presence of noise
and harmonic forcings
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We study numerically the effects of noise and periodic forcings on cluster synchronization in a chain of Van
der Pol oscillators. We generalize the notion of effective synchronization to the case of a spatially extended
system. It is shown that the structure of synchronized clusters can be effectively controlled by applying local
external forcings. The effect of amplitude relations on the phase dynamics is also explored.
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I. INTRODUCTION ence of noisg44,45 to spatially extended systems? What
effect can a local external harmonic signal have on the clus-

The phenomenon of synchronization plays an importanters of synchronization and is it possible to control the clus-
role in the behavior of ensembles of interacting nonlineaters’ parameters by means of external forcing? It is interest-

oscillators. This effect provides the basis for self-ing to elucidate how significant it may be if a variation of
Organization Of ensemb'e dynamics and iS associated W|th iﬁlstantaneous amplitude values of oscillators is taken into
variety of phenomena, such as multistability, growth restric-consideration? Can the behavior of an ensemble be qualita-

tion of the Kolmogorov entropy and attractor dimension,tively described by the phase equations only? We try to an-

spatiotemporal structure formation, etc. The theory of synSWer the above stated questions and this is the main objective

ot - o Aariad ; f this paper.
chronization, originally proposed for quasiperiodic oscilla-° . . :
tions [1—4], was generalized to a wide range of systems in- The paper is organized as follows. In Sec. _II we describe
cluding chaotid5—10] and stochasti€11,17 ones the model and the problems that we address in the paper. In
AT ' ' Sec. Il we study the effect of noise on phase synchroniza-
Phase synchronization in ensembles of locally and glo;

ball led int i iodi illators has b " dtion in a chain of nonidentical Van der Pol oscillators. The
pafly coupled interacting periodic oscifiators has been stu possibility of controlling cluster synchronization by means of
ied for a long time but these investigations still attract the

e local external forcing is discussed in Sec. IV. In Sec. V we
growing interest of many researchef$3,4,14-24 En-  oyniore the peculiarities of behavior of the chain of Van der
sembles of periodic oscillators have found wide applicationssq| gscillators described by the phase equations only. And
in mathematical modeling of physicg22,25-29, chemical finally, we give our conclusions in Sec. VI.
[13,4], and biological 30—34 processes.

It is known that fluctuations are inevitably present in real
ensembles and a parameter mismatemdom or definitely Il. MODEL AND PROBLEM STATEMENT

specified of partia}l systems also takes p_Iace_. Effects of noise  The model under study is a chain of Van der Pol oscilla-
and frequency mismatch on phase locking in an ensemble @érs, being similar to that considered[@4] and including, in
oscillators are considered [24,15,17-21,2) The presence the general case, additive noise and harmonic forcings on the

of a linear gradient of native unperturbed frequencies alonghain elements. The chain is described by a system of equa-
the medium consisting of locally coupled oscillators leads tations which, in a truncated form, are as follows:
the formation of so-called clusters of phase synchronization

(17,24, . ,
Recently, numerous works have appeared devoted to the pi=T(1=p{)pj+alp;-1c04 b~ ¢j-1)
study of ensembles of chaotic oscillat¢2b,35-43. It has ;41 COS by 41— ) — 2p; 1+ Fy(1),

been shown that the synchronization effect also plays an im-
portant role in the dynamics of chaotic ensembles. They

demonstrate a number of phenomena that appear to be quite -, Pj+1 . Pj-1 .
similar to those that have occurred in ensembles of periodic pj=wj+g pi SIN(j+1= ¢y) = Pj Sin(¢; = ¢j—1)
oscillators. Particularly, effects of phase locking and cluster- (1)

phase synchronization have been found in ensembles of cha-
otic oscillators[42,43. This fact testifies that the effect of
synchronization is generic for a variety of oscillatory sys-
tems. wherej is the number of an oscillator, representing a discrete

However, in this research direction there remain a numbespatial coordinatep; and ¢; are the amplitude and the phase
of unresolved problems that require special attention. Howof oscillations of thejth oscillator, respectivelyF;(t) and
stable can cluster synchronization be under the influence d?(t) denote the forcings acting on théh chain element.
fluctuations? Is it possible to generalize the notion of effecEach of them can be presented as the sum of harmonic and
tive synchronization of self-sustained oscillations in the presnoisy terms,

+Pi(t),  j=123...m,
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Fi(1)=A; sin(wht— ;) + V2D E (1), lll. EFFECT OF NOISE ON PHASE SYNCHRONIZATION
IN A CHAIN OF NONIDENTICAL VAN der POL
OSCILLATORS

A . V2D . . .
P(t)=— —'cos{ngt—¢j)+ — (1), j=12,...m We consider an autonomous chaiy; €0 for anyj) of
Pj Pj nonidentical Van der Pol oscillators with a linear frequency
gradient along the spatial coordingteFor such a chain ar-

The boundary conditions were chosen to correspond to Eangement, one can observe cluster phase synchronization in

free-ended chain, . po=p1» Po=1, Pmi1 a certain range of coupling parametgralues[24]. Partial
=pm, Dmi1=bm- oscillators  exhibit  quasiperiodic  oscillations x;(t)
The model(1) has the following parameters:is the ex- = p;(t)cosg;(t) andy;(t) = p;(t)sin;(t), and the number of

citation parametefin computations, we fix=0.5), w; isthe  frequencies in the spectrum of oscillations is determined by
unperturbed frequency of thigh oscillator, i.e., oscillation the number of synchronized clusters. Figurés) and 1b)
frequency without coupling and external forcingsjs the illustrates §;,y;) projections of oscillations in the regime of
coupling parameterd; and w}, denote the normalized am- cluster synchronization that are characteristic for the center
plitude and the frequency of the harmonic force acting on theand the boundary of a cluster, respectively. If we consider
jth element, and;(t) and »;(t) are assumed to be identical, oscillators within the same cluster, then a representative
uncorrelated Gaussian white noise sources with zero meapint rotates about the origin;=0, y;=0, on an average,
and with the same intensiy." In our work we are dealing ith the same frequency and a bounded phase shift. Oscilla-
with a case of linear dependencies of the unperturbed fragrs belonging to different clusters have distinct rotation fre-
quencies on the spatial coordinaje i.e., w;j=wi+(]  quencies. Consequently, the form of phase projections
—1)A, whereA is the frequency mismatch of two neighbor- (. y ) is qualitatively different when thgth andkth oscil-

ing oscillators. The peculiarities of the chain dynamics doj¢¢ belong to one clustéFig. 1(c)] and to different clus-
not depend on the choice of the frequency origin. Therefor(?ers[,:ig' 1(d)].

In our computations, we sei; =0, thus shifting the origin Now we are going to elucidate how the noise influences
of frequencies by the value of the unperturbed frequency O{he cluster svnchronization. We fik=0.002 and compute
the first oscillator. o _y ' e : P
We study numerically the chaifil) with m=100 ele- the distribution of perturbed frequencies of oscillators
ments using a fourth_order Runge_Kutta routine. In thealong the Chain W|th0ut and W|th noise. The Calculation re-
course of numerical experiments, we analyze the dynamic8ults, shown in part | of Figs.(d) and 2b) for two different
of each element, estimate the variation of phageduringa  values of the coupling parametgy clearly demonstrate the
large enough timdl, and compute the averadperturbedi  effect of cluster synchronization in the noise-free chdin (
frequenciegj,j of the partial oscillators, =0) and completely correspond to the analogous results pre-
sented in24].
Now consider the case when all oscillators are subjected
@ to noisy perturbations. Partfl) and(lll) of Figs. 2d) and
2(e) present the distributions of the perturbed frequencies for
two different noise intensitie® =0.000 01 andD =0.001,
respectively. It is clearly seen that for both coupling param-
The angle brackets mean time averaging. The initial condieters, the clusters of synchronization are destroyed as the
tions for the oscillators are chosen to be close to homogenoise intensity increases. If the noise is weak, the clusters’
neous ones with a small random dispersion within0.1. boundaries are only smoothening slighttyraphs(il)]. Both
In this paper we mainly address the issue concerning themoothening and gradual destruction of the clusters begin
effect of noise and external forcing on cluster synchronizawith the chain center. For sufficiently large noisgraphs
tion in a chain of nonidentical Van der Pol oscillators. We (Ill)], all middle clusters are completely destroyed. However,
explore(i) the pure noise effect on all chain elemerfiiy,the  our computations have shown that the first and the last clus-
same situation but with a local synchronous harmonic forcters appear to be highly stable to noisy disturbances and only
ing on a chosen element, arii) the effect of local har- a very strong noise is needed to destroy them.
monic forcing on chosen elements of the chain with no noise It is interesting to explore how the addition of local syn-
added. chronous forcing can affect noise-induced cluster destruc-
tion. For this purpose, the 50th element of the chain is sub-
jected to external harmonic forcing with amplitudg,=1

n fact, in numerical experiments the same pseudorandom nur'n‘"—lnd frequencyugg= (1—1)A, j=50, bem_g equal to the un-
ber generator was used having a Gaussian distribution. Successip€rturbed frequency of the chosen oscillator. The other os-
values produced by the generator may be treated as practically ifllators remain unforced, i.eA;=0 for j#50. We apply
dependent . To make sure that the noise disturbances are uncorféoise of a sufficiently large intensit =0.001 so that all
lated, the noise source added to each subsequent element of tBnchronized clusters are destroyed, except the first and the
chain was shifted with respect to the previous one by five iterationdast ones. The results of synchronous action are shown in
of the pseudorandom number generator. part (IV) of Figs. 2a) and 2b). It can be seen that the

;={¢;())=lim

T—oo

?i(to+T)— ¢j(to)
T .
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FIG. 1. Phase projections of oscillations of
partial oscillators in the regime of cluster syn-
chronization forA =0.002 andg=3.8.

FIG. 2. Distributions of the perturbed oscilla-
tor frequencies forA=0.002 and for different
strengths of coupling(a) g=0.55; (b) g=3.8.
Dependenciesl), (Il) and (1) are obtained for
the autonomous chain in the presence of noise
with intensity D=0, D=0.00001, and D
=0.001, respectively. PlotdV) reflect the re-
sults of action of synchronous forcing applied to
the 50th element, as indicated by arrows, in the
presence of noise with intensify=0.001.
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external forcing added even to a single element of the chain We compute the effective diffusion coefficient versus the
enables to partially recover the structure of the noisespatial coordinate within one cluster (89<62) for three
destroyed clusters. o different values of noise intensitp. Numerical results are
The effect of noise on cluster synchronization can beyresented in Fig. 4. They testify to a gradual destruction of
more clearly understood by considering how the phase difine cjuster's boundaries as the noise intensity increases. One
ferencesd;(t) = ¢;.1(t) — ¢;(t) of neighboring oscillators, can pote that the dependerdegg(j) is quite similar(taking

located near the cluster’s boundary, change with time with;1 occount thaf is a discrete variabjeto a well-known

SUt and in the Eresen_ce Igf noi35e. 'I;jhedcorrespt)orldinr? deﬁﬁrd'ependence, of the diffusion coefficient of the phase differ-
encies aré shown in Fg. s and demonstrate Now &, . hetween a self-sustained system and external forcing
sharply-defined boundary of phase synchronization can bé

destroyed in the presence of fluctuations. Without noise, thgers%s de_turtw_mg. Thebclléstf_er N dbt;)undarl_es_ of effectnt/el ph‘?je
phase difference of oscillators belonging to different clusteriSync ronization can be defined by specifying some tolerable

increases, on an average, linearly as the time godgign  1€ve! of the diffusion coefficien [;?X._In this case oscilla-
3(a)]. At the same time, the phase difference remains untors for whichD ¢s<Dgi™ can be considered as belonging to
changed if the oscillators considered belong to the same clughe same cluster. Such a determination of the cluster’'s
ter (we exclude oscillations within the intervigh- 7, 7] with  boundaries is arbitrary enough since the valuBgf* can be
respect to the mean valugsee Figs. @) and 3c)]. When  given in different ways depending on a particular task. How-
the noise is added, the phase difference of any of the neigh-
boring oscillators grows indefinitely with time but this
growth is not linear for any value gf[Fig. 3(d)-3(f)]. The
average growth rate of the phase difference is different for
differentj. This fact allows one to find certain segments of
the chain for which this rate is low. Hence, we can identify
clusters of effective phase synchronization in the presence oD
noise[45]. off
The clusters’ boundaries in the presence of noise can b
estimated by using the effective diffusion coeffici€; of
the phase difference of neighboring oscillatptd]. D de- D |
fines the average rate with which the variarnz:éj(t) of 0.00030’_/ jss 40L\:;ﬁ JG

phase differenc#); increases in time. Its mean value can be J
calculated as follows:

0.010

0.005

0

FIG. 4. Effective diffusion coefficienD . as a function of spa-
1 ag_(t) tial coordinatej for D=0 (thin dashed ling D=0.000 01 (thin
Dei(j) = limz ——, o-?,,(t)=<0j2(t)>—<01(t))2. solid line), andD = 0.0001(thick solid ling. The horizontal dotted
2t ] line marks the level oDg*, defining the cluster’s boundaries. The
3 detuning and the coupling strength axe=0.002 andg=3.8.
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0.00 y : ; ; 0.00 .
0 20 40 60 80 100 chronous forcing on the central element of the
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015 1 0.15 1 the middle cluster. Forcing amplitudes are taken
' ' to be equal to unity. Arrows indicate the places
0.10 1 0.10 4 where external forcings are applied. For compari-
0.05 . 0.05 son, the original structure of synchronized clus-
) ) ters is shown by a dashed line.
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(b) (d)

ever, in any case the length of a cluster decreases with idarger than the characteristic frequency of the given cluster.
creasing noise intensity. For example, givef*=0.001, The graphs of Figs.(6) and §d) demonstrate effects being
the boundaries of the cluster shown in Fig. 4 fbr  qualitatively similar to those described for the synchronous
=0.0001 correspond to the 44th and the 56th oscillators. forcing. The number of clusters remains the same but their
length and partial frequenciéﬁ change. However, there are
noticeable differences as compared to the synchronous case.
First, there occurs external synchronization of the forced and
a few neighboring oscillators at the controlling signal fre-
Now we are going to study how local external forcings quency. Secondly, the length of one of the neighboring clus-

may influence the dynamics of a chain with no noise addeders increases abruptly. Whmi)l(<2>51, this is the left clus-

This problem seems to be quite interesting since its soluti0|.E|er from the central onFig. 5(c)] and whenw®> e, , the
" ex !

;:_an pvr\clnwde us dthe pos_5|b|lf|ty to f}of‘”o:( c\:/lust%r Sylgclhrom.ﬁ""'right cluster from the central one becomes lardeg. 5(d)].
lon. YVe consider a noise-iree chain of van der Fol oscllia- “rp o 1 meric results, shown in Fig. 5, reflect new nonlin-

tors with a linear frequency gradient along the chain. Ourear effects in a chain of coupled oscillators under external

aim is to study the influence of external harmonic forcingsforcing_ Unfortunately, we are as yet unable to fully explain
with different frequencies;, on the structure of clusters in oo results from the physical point of view

this chain. In our computation, we fiA=0.002 andg Clusters of phase synchronization can also be observed in
=0.55. Figure %) |Ilustrates_how _the structure of _clusters a chain of identical elements\(0) when chosen elements
changes when the local forcing with amplitule=1is ap-  are subjected to external signals with frequencies linearly
plied to the central element of the middle clust¢r=61). depending on the spatial coordingte Examples of such

For cor_npa_rison, the structure of clusters without forcing is_forced cluster synchronization are presented in Fi¢.@nd
shown in Fig. 5 by a dashed line. As can be seen, the dlstr|6(b) for two strengths of coupling=1 andg=2, respec-

bution of perturbed partial frequencies remains practicallwiveb,; the parameters of external forcings ake=2 and
the same under synchronous forcing and only the boundariecgj —(j—1)A, whereA=0.001. The external signals are in-
between the clusters become less marked. Another picture Is% . 1'i the elements with=10k, k=1,2 10 incase
observed when the external forcing is applied to the boun (@ and in the elements with= 10'+ 15k ' k=12 6 in
ary elements j(=44 andj=54) of the middle clustefFig. case(b) ' e

5(b)]. First, the lengths of all seven synchronization clusters '
change, especially that of the forced cluster, which is consid-

IV. CONTROLLING CLUSTER SYNCHRONIZATION BY
MEANS OF LOCAL EXTERNAL FORCING

erably increased from 11 to 18 elements €4%59). Sec- V. PHASE DYNAMICS APPROACH
ondly, the partial frequencias; change for 2,3 and 5,6 clus-  In the previous sections we have numerically studied the
ters. chain of Van der Pol oscillators, which is described by the

Now we take an asynchronous forcing with amplitudesystem of truncated equatio( where amplitude and phase
A;=1 and apply it to the central element<51) of the dynamics are combined. However in many cases only phase
same middle cluster. The results of the forcing action arequations are often used assuming amplitudes to be equal
shown in Figs. &) and 5d) for two different forcing fre-  and constant in time. Such an approach allows one to quali-
quenciesmg)l(: 0.02 andw;=0.2, respectively. These values tatively describe effects of frequency and phase locking and

of wl, were chosen to be accordingly much less and muclo simplify numerical simulation. Besides, in some cases the
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problem can be solved analytically using the phase equatiorsynchronization picture. With increasing strength of the cou-
only[13,4,17,20,21,23,46Nevertheless, the dynamics of an pling, the middle clusters also appé¢&ig. 7(b) and 7c)] but
ensemble may be distorted and some effects may be losfeir structure is somewhat different from that formed when
such as, for example, “oscillator deat19,18,24,47if the  integrating the systerfl). As seen from Figs.(B) and 7c),
amplitude dynamics is excluded from consideration. In parthe extreme clusters are extended while the middle ones be-
ticular, as emphasized i24], amplitude effects may influ- come shorter. The height of the clusters’ steps, i.e., the dif-
ence the cluster structure formation. To reveal such an effecterence between the frequencies of neighboring clusters, is
we analyze first-cluster synchronization in the unforcedess than that for systerfl) and decreases rapidly as the
chain described by the phase equations only and then comstrength of coupling increases. Thus, the region of cluster
pare it with relevant results obtained for the full system ofsynchronization significantly shrinks when only phase dy-
truncated equationgl). The system of phase equations cannamics is taken into consideration. Moreover, in this case the
easily be derived from Eql) by settingp;=1 for anyj.  cluster structure appears to be more sensitive to noise pertur-
This means that the amplitudes of all oscillators are taken tbations. This is illustrated in Fig.(d) when a weak noise of
be equal to their unperturbed value. The system of phasatensityD =0.00001 is added to the systdr). As follows
equations reads from the figure, the noise causes the middle clusters to be
destroyed.

di= w1+ (j =LA+ g[SIN(¢j 1~ ¢)) —siN(pj— pj_1)]
+\2D7(t), j=12,...m, 4 VI. CONCLUSIONS

The boundary conditions corresponding to the free ends are In this paper we have numerically studied the dynamics of
o= b1, Pm+1=¢m. The detuning is fixed aA =0.002. a chain of diffusively coupled Van der Pol oscillators. The
The frequency distributions calculated from E@) are  numerical results obtained allow us to make a number of
shown in Fig. 7 for different strengths of coupling. The firstimportant conclusions.

three plots correspond to the noise-free case. In Fig. 7 Cluster synchronization observed in a chain of nonidenti-
illustrating the frequency distribution fay=0.55, only two  cal elements appears to be sufficiently stable against uncor-
clusters can be observed being formed at the boundaries oflated Gaussian fluctuations added to each element. The
the chain. The analogous distribution, presented in(bpdf  cluster structure can be considerably destroyed in the pres-
Fig. 2(a) for the full system[Eq. (1)], reflects a more rich ence of noise of large intensities.
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0.15] @ 0157 @]
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0.05 ! 0.05 1 .
J J
0.00 y : ; ; 0.00 ; w ; ; s atribg it
0 20 40 60 80 100 0 20 40 60 80 100 FIG. 7. Distributions of the perturbed fre-
quencies in the chain, described by the phase
(a) (c) equations(4), for A=0.002 and for different
strengths of the coupling(a) g=0.55, (b) g
0.20 — 0.20 =0.7, (c) g= 1.5 without noise, an(d) g=1.5in
[OF o the presence of noise with intensityD
0.15 I 0.15 | J
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J J
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(b) (d)

036225-6



PHASE-FREQUENCY SYNCHRONIZATION IN A CHAIN . .. PHYSICAL REVIEW B3 036225

A synchronous external forcing injected even in indi- Cluster synchronization can be realized in a chain of iden-
vidual elements of the chain can partially recover the initialtical oscillators by injecting external signals in certain ele-
cluster structure even in the presence of enough large noisments.

The notion of effective synchronization introduced 4] Amplitude dynamics may play an essential role in creat-
for a single Van der Pol oscillator and characterized by theng the cluster structure. Cluster synchronization can also be
effective diffusion coefficienD.; can be extended to the observed in a chain modeled by the phase equations only.
case of synchronized clusters. With this, the effective size oBut this effect is realized in a considerably narrow range of
a cluster at the given noise level is determined by the valueoupling parameter values. Besides, the cluster structure ap-

Of Dt pears to be more sensitive to noise perturbations.
The application of an external periodic signal to indi-
vidual elements of the chain causes the lengths and the char- ACKNOWLEDGMENTS
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