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Phase-frequency synchronization in a chain of periodic oscillators in the presence of noise
and harmonic forcings

Tatjana E. Vadivasova, Galina I. Strelkova, and Vadim S. Anishchenko
Laboratory of Nonlinear Dynamics, Department of Physics, Saratov State University, 410026 Saratov, Russia
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We study numerically the effects of noise and periodic forcings on cluster synchronization in a chain of Van
der Pol oscillators. We generalize the notion of effective synchronization to the case of a spatially extended
system. It is shown that the structure of synchronized clusters can be effectively controlled by applying local
external forcings. The effect of amplitude relations on the phase dynamics is also explored.
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I. INTRODUCTION

The phenomenon of synchronization plays an import
role in the behavior of ensembles of interacting nonlin
oscillators. This effect provides the basis for se
organization of ensemble dynamics and is associated w
variety of phenomena, such as multistability, growth rest
tion of the Kolmogorov entropy and attractor dimensio
spatiotemporal structure formation, etc. The theory of s
chronization, originally proposed for quasiperiodic oscil
tions @1–4#, was generalized to a wide range of systems
cluding chaotic@5–10# and stochastic@11,12# ones.

Phase synchronization in ensembles of locally and g
bally coupled interacting periodic oscillators has been st
ied for a long time but these investigations still attract t
growing interest of many researchers@13,4,14–24#. En-
sembles of periodic oscillators have found wide applicatio
in mathematical modeling of physical@22,25–29#, chemical
@13,4#, and biological@30–34# processes.

It is known that fluctuations are inevitably present in re
ensembles and a parameter mismatch~random or definitely
specified! of partial systems also takes place. Effects of no
and frequency mismatch on phase locking in an ensemb
oscillators are considered in@14,15,17–21,24#. The presence
of a linear gradient of native unperturbed frequencies al
the medium consisting of locally coupled oscillators leads
the formation of so-called clusters of phase synchroniza
@17,24#.

Recently, numerous works have appeared devoted to
study of ensembles of chaotic oscillators@25,35–43#. It has
been shown that the synchronization effect also plays an
portant role in the dynamics of chaotic ensembles. Th
demonstrate a number of phenomena that appear to be
similar to those that have occurred in ensembles of perio
oscillators. Particularly, effects of phase locking and clus
phase synchronization have been found in ensembles of
otic oscillators@42,43#. This fact testifies that the effect o
synchronization is generic for a variety of oscillatory sy
tems.

However, in this research direction there remain a num
of unresolved problems that require special attention. H
stable can cluster synchronization be under the influenc
fluctuations? Is it possible to generalize the notion of eff
tive synchronization of self-sustained oscillations in the pr
1063-651X/2001/63~3!/036225~8!/$15.00 63 0362
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ence of noise@44,45# to spatially extended systems? Wh
effect can a local external harmonic signal have on the c
ters of synchronization and is it possible to control the cl
ters’ parameters by means of external forcing? It is intere
ing to elucidate how significant it may be if a variation
instantaneous amplitude values of oscillators is taken
consideration? Can the behavior of an ensemble be qua
tively described by the phase equations only? We try to
swer the above stated questions and this is the main obje
of this paper.

The paper is organized as follows. In Sec. II we descr
the model and the problems that we address in the pape
Sec. III we study the effect of noise on phase synchroni
tion in a chain of nonidentical Van der Pol oscillators. T
possibility of controlling cluster synchronization by means
local external forcing is discussed in Sec. IV. In Sec. V w
explore the peculiarities of behavior of the chain of Van d
Pol oscillators described by the phase equations only. A
finally, we give our conclusions in Sec. VI.

II. MODEL AND PROBLEM STATEMENT

The model under study is a chain of Van der Pol oscil
tors, being similar to that considered in@24# and including, in
the general case, additive noise and harmonic forcings on
chain elements. The chain is described by a system of e
tions which, in a truncated form, are as follows:

ṙ j5r ~12r j
2!r j1g@r j 21 cos~f j2f j 21!

1r j 11 cos~f j 112f j !22r j #1F j~ t !,

ḟ j5v j1gFr j 11

r j
sin~f j 112f j !2

r j 21

r j
sin~f j2f j 21!G

~1!

1Pj~ t !, j 51,2,3, . . . ,m,

wherej is the number of an oscillator, representing a discr
spatial coordinate,r j andf j are the amplitude and the phas
of oscillations of thej th oscillator, respectively.F j (t) and
Pj (t) denote the forcings acting on thej th chain element.
Each of them can be presented as the sum of harmonic
noisy terms,
©2001 The American Physical Society25-1
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F j~ t !5Aj sin~vex
j t2f j !1A2Dj j~ t !,

Pj~ t !52
Aj

r j
cos~vex

j t2f j !1
A2D

r j
h j~ t !, j 51,2, . . . ,m.

The boundary conditions were chosen to correspond t
free-ended chain, i.e., r05r1 , f05f1 , rm11
5rm , fm115fm .

The model~1! has the following parameters:r is the ex-
citation parameter~in computations, we fixr 50.5), v j is the
unperturbed frequency of thej th oscillator, i.e., oscillation
frequency without coupling and external forcings,g is the
coupling parameter,Aj and vex

j denote the normalized am
plitude and the frequency of the harmonic force acting on
j th element, andj j (t) andh j (t) are assumed to be identica
uncorrelated Gaussian white noise sources with zero m
and with the same intensityD.1 In our work we are dealing
with a case of linear dependencies of the unperturbed
quencies on the spatial coordinatej, i.e., v j5v11( j
21)D, whereD is the frequency mismatch of two neighbo
ing oscillators. The peculiarities of the chain dynamics
not depend on the choice of the frequency origin. Theref
in our computations, we setv150, thus shifting the origin
of frequencies by the value of the unperturbed frequency
the first oscillator.

We study numerically the chain~1! with m5100 ele-
ments using a fourth-order Runge-Kutta routine. In t
course of numerical experiments, we analyze the dynam
of each element, estimate the variation of phasesf j during a
large enough timeT, and compute the average~perturbed!
frequenciesṽ j of the partial oscillators,

ṽ j5^ḟ j~ t !&5 lim
T→`

f j~ t01T!2f j~ t0!

T
. ~2!

The angle brackets mean time averaging. The initial con
tions for the oscillators are chosen to be close to homo
neous ones with a small random dispersion withind50.1.

In this paper we mainly address the issue concerning
effect of noise and external forcing on cluster synchroni
tion in a chain of nonidentical Van der Pol oscillators. W
explore~i! the pure noise effect on all chain elements,~ii ! the
same situation but with a local synchronous harmonic fo
ing on a chosen element, and~iii ! the effect of local har-
monic forcing on chosen elements of the chain with no no
added.

1In fact, in numerical experiments the same pseudorandom n
ber generator was used having a Gaussian distribution. Succe
values produced by the generator may be treated as practicall
dependent . To make sure that the noise disturbances are unc
lated, the noise source added to each subsequent element o
chain was shifted with respect to the previous one by five iterati
of the pseudorandom number generator.
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III. EFFECT OF NOISE ON PHASE SYNCHRONIZATION
IN A CHAIN OF NONIDENTICAL VAN der POL

OSCILLATORS

We consider an autonomous chain (Aj50 for any j ) of
nonidentical Van der Pol oscillators with a linear frequen
gradient along the spatial coordinatej. For such a chain ar-
rangement, one can observe cluster phase synchronizati
a certain range of coupling parameterg values@24#. Partial
oscillators exhibit quasiperiodic oscillations xj (t)
5r j (t)cosfj(t) andyj (t)5r j (t)sinfj(t), and the number of
frequencies in the spectrum of oscillations is determined
the number of synchronized clusters. Figures 1~a! and 1~b!
illustrates (xj ,yj ) projections of oscillations in the regime o
cluster synchronization that are characteristic for the ce
and the boundary of a cluster, respectively. If we consi
oscillators within the same cluster, then a representa
point rotates about the originxj50, yj50, on an average
with the same frequency and a bounded phase shift. Osc
tors belonging to different clusters have distinct rotation f
quencies. Consequently, the form of phase projecti
(xj ,xk) is qualitatively different when thej th andkth oscil-
lators belong to one cluster@Fig. 1~c!# and to different clus-
ters @Fig. 1~d!#.

Now we are going to elucidate how the noise influenc
the cluster synchronization. We fixD50.002 and compute

the distribution of perturbed frequenciesṽ j of oscillators
along the chain without and with noise. The calculation
sults, shown in part I of Figs. 2~a! and 2~b! for two different
values of the coupling parameterg, clearly demonstrate the
effect of cluster synchronization in the noise-free chainD
50) and completely correspond to the analogous results
sented in@24#.

Now consider the case when all oscillators are subjec
to noisy perturbations. Parts~II ! and ~III ! of Figs. 2~d! and
2~e! present the distributions of the perturbed frequencies
two different noise intensitiesD50.000 01 andD50.001,
respectively. It is clearly seen that for both coupling para
eters, the clusters of synchronization are destroyed as
noise intensity increases. If the noise is weak, the clust
boundaries are only smoothening slightly@graphs~II !#. Both
smoothening and gradual destruction of the clusters be
with the chain center. For sufficiently large noise@graphs
~III !#, all middle clusters are completely destroyed. Howev
our computations have shown that the first and the last c
ters appear to be highly stable to noisy disturbances and
a very strong noise is needed to destroy them.

It is interesting to explore how the addition of local sy
chronous forcing can affect noise-induced cluster destr
tion. For this purpose, the 50th element of the chain is s
jected to external harmonic forcing with amplitudeA5051
and frequencyvex

505( j 21)D, j 550, being equal to the un
perturbed frequency of the chosen oscillator. The other
cillators remain unforced, i.e.,Aj50 for j Þ50. We apply
noise of a sufficiently large intensityD50.001 so that all
synchronized clusters are destroyed, except the first and
last ones. The results of synchronous action are show
part ~IV ! of Figs. 2~a! and 2~b!. It can be seen that the

-
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PHASE-FREQUENCY SYNCHRONIZATION IN A CHAIN . . . PHYSICAL REVIEW E63 036225
FIG. 1. Phase projections of oscillations o
partial oscillators in the regime of cluster syn
chronization forD50.002 andg53.8.

FIG. 2. Distributions of the perturbed oscilla
tor frequencies forD50.002 and for different
strengths of coupling:~a! g50.55; ~b! g53.8.
Dependencies~I!, ~II ! and ~III ! are obtained for
the autonomous chain in the presence of no
with intensity D50, D50.000 01, and D
50.001, respectively. Plots~IV ! reflect the re-
sults of action of synchronous forcing applied
the 50th element, as indicated by arrows, in t
presence of noise with intensityD50.001.
036225-3
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FIG. 3. Temporal dependencies of phase d
ferenceu j (t) of neighboring oscillators without
noise near the cluster’s boundary~a!, ~b!, in the
center of the cluster~c!, and in the presence o
noise of intensityD50.001~d!, ~e!, and~f!. The
parameters areD50.002 andg53.8.
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external forcing added even to a single element of the ch
enables to partially recover the structure of the noi
destroyed clusters.

The effect of noise on cluster synchronization can
more clearly understood by considering how the phase
ferencesu j (t)5f j 11(t)2f j (t) of neighboring oscillators,
located near the cluster’s boundary, change with time w
out and in the presence of noise. The corresponding de
dencies are shown in Fig. 3 and demonstrate how
sharply-defined boundary of phase synchronization can
destroyed in the presence of fluctuations. Without noise,
phase difference of oscillators belonging to different clust
increases, on an average, linearly as the time goes on@Fig.
3~a!#. At the same time, the phase difference remains
changed if the oscillators considered belong to the same c
ter ~we exclude oscillations within the interval@2p,p# with
respect to the mean value! @see Figs. 3~b! and 3~c!#. When
the noise is added, the phase difference of any of the ne
boring oscillators grows indefinitely with time but th
growth is not linear for any value ofj @Fig. 3~d!–3~f!#. The
average growth rate of the phase difference is different
different j. This fact allows one to find certain segments
the chain for which this rate is low. Hence, we can ident
clusters of effective phase synchronization in the presenc
noise@45#.

The clusters’ boundaries in the presence of noise can
estimated by using the effective diffusion coefficientDeff of
the phase difference of neighboring oscillators@44#. Deff de-
fines the average rate with which the variancesu j

2 (t) of

phase differenceu j increases in time. Its mean value can
calculated as follows:

Deff~ j !5 lim
t→`

1

2

su j

2 ~ t !

t
, su j

2 ~ t !5^u j
2~ t !&2^u j~ t !&2.

~3!
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We compute the effective diffusion coefficient versus t
spatial coordinate within one cluster (39< j <62) for three
different values of noise intensityD. Numerical results are
presented in Fig. 4. They testify to a gradual destruction
the cluster’s boundaries as the noise intensity increases.
can note that the dependenceDeff( j ) is quite similar~taking
into account thatj is a discrete variable! to a well-known
dependence, of the diffusion coefficient of the phase diff
ence between a self-sustained system and external for
versus detuning. The cluster’s boundaries of effective ph
synchronization can be defined by specifying some tolera
level of the diffusion coefficientDeff

max. In this case oscilla-
tors for whichDeff<Deff

max can be considered as belonging
the same cluster. Such a determination of the clust
boundaries is arbitrary enough since the value ofDeff

max can be
given in different ways depending on a particular task. Ho

FIG. 4. Effective diffusion coefficientDeff as a function of spa-
tial coordinatej for D50 ~thin dashed line!, D50.000 01 ~thin
solid line!, andD50.0001~thick solid line!. The horizontal dotted
line marks the level ofDeff

max, defining the cluster’s boundaries. Th
detuning and the coupling strength areD50.002 andg53.8.
5-4
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PHASE-FREQUENCY SYNCHRONIZATION IN A CHAIN . . . PHYSICAL REVIEW E63 036225
FIG. 5. Structure of synchronized clusters
the chain of Van der Pol oscillators forD
50.002 andg50.55 in the presence of~a! syn-
chronous forcing on the central element of th
middle cluster,~b! synchronous forcing on the
boundary elements of the middle cluster, a
asynchronous forcing with smaller~c! and larger
~d! frequencies acting on the central element
the middle cluster. Forcing amplitudes are tak
to be equal to unity. Arrows indicate the place
where external forcings are applied. For compa
son, the original structure of synchronized clu
ters is shown by a dashed line.
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ever, in any case the length of a cluster decreases with
creasing noise intensity. For example, givenDeff

max50.001,
the boundaries of the cluster shown in Fig. 4 forD
50.0001 correspond to the 44th and the 56th oscillators

IV. CONTROLLING CLUSTER SYNCHRONIZATION BY
MEANS OF LOCAL EXTERNAL FORCING

Now we are going to study how local external forcin
may influence the dynamics of a chain with no noise add
This problem seems to be quite interesting since its solu
can provide us the possibility to control cluster synchroni
tion. We consider a noise-free chain of Van der Pol osci
tors with a linear frequency gradient along the chain. O
aim is to study the influence of external harmonic forcin
with different frequenciesvex

j on the structure of clusters i
this chain. In our computation, we fixD50.002 andg
50.55. Figure 5~a! illustrates how the structure of cluste
changes when the local forcing with amplitudeA51 is ap-
plied to the central element of the middle cluster (j 551).
For comparison, the structure of clusters without forcing
shown in Fig. 5 by a dashed line. As can be seen, the di
bution of perturbed partial frequencies remains practica
the same under synchronous forcing and only the bounda
between the clusters become less marked. Another pictu
observed when the external forcing is applied to the bou
ary elements (j 544 and j 554) of the middle cluster@Fig.
5~b!#. First, the lengths of all seven synchronization clust
change, especially that of the forced cluster, which is con
erably increased from 11 to 18 elements (41< j <59). Sec-
ondly, the partial frequenciesṽ j change for 2,3 and 5,6 clus
ters.

Now we take an asynchronous forcing with amplitu
Aj51 and apply it to the central element (j 551) of the
same middle cluster. The results of the forcing action
shown in Figs. 5~c! and 5~d! for two different forcing fre-
quenciesvex

5150.02 andvex
5150.2, respectively. These value

of vex
j were chosen to be accordingly much less and m
03622
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larger than the characteristic frequency of the given clus
The graphs of Figs. 5~c! and 5~d! demonstrate effects bein
qualitatively similar to those described for the synchrono
forcing. The number of clusters remains the same but th
length and partial frequenciesṽ j change. However, there ar
noticeable differences as compared to the synchronous c
First, there occurs external synchronization of the forced
a few neighboring oscillators at the controlling signal fr
quency. Secondly, the length of one of the neighboring cl
ters increases abruptly. Whenvex

51!ṽ51, this is the left clus-

ter from the central one@Fig. 5~c!# and whenvex
51@ṽ51, the

right cluster from the central one becomes larger@Fig. 5~d!#.
The numeric results, shown in Fig. 5, reflect new nonl

ear effects in a chain of coupled oscillators under exter
forcing. Unfortunately, we are as yet unable to fully expla
these results from the physical point of view.

Clusters of phase synchronization can also be observe
a chain of identical elements (D50) when chosen element
are subjected to external signals with frequencies linea
depending on the spatial coordinatej. Examples of such
forced cluster synchronization are presented in Figs. 6~a! and
6~b! for two strengths of couplingg51 andg52, respec-
tively; the parameters of external forcings areAj52 and
vex

j 5( j 21)D, whereD50.001. The external signals are in
jected in the elements withj 510k, k51,2, . . . ,10 incase
~a! and in the elements withj 510115k, k51,2, . . . ,6 in
case~b!.

V. PHASE DYNAMICS APPROACH

In the previous sections we have numerically studied
chain of Van der Pol oscillators, which is described by t
system of truncated equations~1! where amplitude and phas
dynamics are combined. However in many cases only ph
equations are often used assuming amplitudes to be e
and constant in time. Such an approach allows one to qu
tatively describe effects of frequency and phase locking
to simplify numerical simulation. Besides, in some cases
5-5
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FIG. 6. Examples of forced cluster synchron
zation in the chain of identical Van der Pol osci
lators. External signals with amplitudesAj52
and frequencies vex

j 5( j 21)D, where D
50.001, are applied to the chain elements w
~a! j 510k, k51,2, . . . ,10 forg51, and ~b! j
510115k, k51,2, . . . ,6 forg52.
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problem can be solved analytically using the phase equat
only @13,4,17,20,21,23,46#. Nevertheless, the dynamics of a
ensemble may be distorted and some effects may be
such as, for example, ‘‘oscillator death’’@19,18,24,47# if the
amplitude dynamics is excluded from consideration. In p
ticular, as emphasized in@24#, amplitude effects may influ-
ence the cluster structure formation. To reveal such an ef
we analyze first-cluster synchronization in the unforc
chain described by the phase equations only and then c
pare it with relevant results obtained for the full system
truncated equations~1!. The system of phase equations c
easily be derived from Eq.~1! by settingr j51 for any j.
This means that the amplitudes of all oscillators are take
be equal to their unperturbed value. The system of ph
equations reads

ḟ j5v11~ j 21!D1g@sin~f j 112f j !2sin~f j2f j 21!#

1A2Dh j~ t !, j 51,2, . . . ,m. ~4!

The boundary conditions corresponding to the free ends
f05f1 , fm115fm . The detuning is fixed asD50.002.
The frequency distributions calculated from Eq.~4! are
shown in Fig. 7 for different strengths of coupling. The fir
three plots correspond to the noise-free case. In Fig.~a!
illustrating the frequency distribution forg50.55, only two
clusters can be observed being formed at the boundarie
the chain. The analogous distribution, presented in part~I! of
Fig. 2~a! for the full system@Eq. ~1!#, reflects a more rich
03622
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synchronization picture. With increasing strength of the co
pling, the middle clusters also appear@Fig. 7~b! and 7~c!# but
their structure is somewhat different from that formed wh
integrating the system~1!. As seen from Figs. 7~b! and 7~c!,
the extreme clusters are extended while the middle ones
come shorter. The height of the clusters’ steps, i.e., the
ference between the frequencies of neighboring clusters
less than that for system~1! and decreases rapidly as th
strength of coupling increases. Thus, the region of clus
synchronization significantly shrinks when only phase d
namics is taken into consideration. Moreover, in this case
cluster structure appears to be more sensitive to noise pe
bations. This is illustrated in Fig. 4~d! when a weak noise o
intensityD50.000 01 is added to the system~4!. As follows
from the figure, the noise causes the middle clusters to
destroyed.

VI. CONCLUSIONS

In this paper we have numerically studied the dynamics
a chain of diffusively coupled Van der Pol oscillators. Th
numerical results obtained allow us to make a number
important conclusions.

Cluster synchronization observed in a chain of nonide
cal elements appears to be sufficiently stable against un
related Gaussian fluctuations added to each element.
cluster structure can be considerably destroyed in the p
ence of noise of large intensities.
-
se
FIG. 7. Distributions of the perturbed fre
quencies in the chain, described by the pha
equations ~4!, for D50.002 and for different
strengths of the coupling:~a! g50.55, ~b! g
50.7, ~c! g51.5 without noise, and~d! g51.5 in
the presence of noise with intensityD
50.000 01.
5-6
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PHASE-FREQUENCY SYNCHRONIZATION IN A CHAIN . . . PHYSICAL REVIEW E63 036225
A synchronous external forcing injected even in ind
vidual elements of the chain can partially recover the ini
cluster structure even in the presence of enough large n

The notion of effective synchronization introduced in@44#
for a single Van der Pol oscillator and characterized by
effective diffusion coefficientDeff can be extended to th
case of synchronized clusters. With this, the effective size
a cluster at the given noise level is determined by the va
of Deff .

The application of an external periodic signal to ind
vidual elements of the chain causes the lengths and the c
acteristic frequencies of clusters to change. The most no
able changes in the cluster structure can be distinguis
under asynchronous forcing when the controlling signal f
quency is larger or less than the characteristic frequenc
the controlled cluster.
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Cluster synchronization can be realized in a chain of id
tical oscillators by injecting external signals in certain e
ments.

Amplitude dynamics may play an essential role in cre
ing the cluster structure. Cluster synchronization can also
observed in a chain modeled by the phase equations o
But this effect is realized in a considerably narrow range
coupling parameter values. Besides, the cluster structure
pears to be more sensitive to noise perturbations.
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