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Abstract. This study presents a survey of the results obtained by the au-

thors on statistical description of dynamical chaos and the effect of noise on
dynamical regimes. We deal with nearly hyperbolic and nonhyperbolic chaotic
attractors and discuss methods of diagnosing the type of an attractor. We

consider regularities of the relaxation to an invariant probability measure for
different types of attractors. We explore peculiarities of autocorrelation de-

cay and of power spectrum shape and their interconnection with Lyapunov
exponents, instantaneous phase diffusion and the intensity of external noise.
Numeric results are compared with experimental data.

1. Introduction. Dynamical chaos, like a random process, requires a statistical
description. When chaotic systems are studied in computer or physical experiments,
probability characteristics (such as a stationary probability distribution on an at-
tractor, correlation functions, power spectra and others) are usually calculated or
measured. Chaotic oscillations that correspond to different types of chaotic attrac-
tors in the phase space of dynamical systems are characterized by various statistical
properties as well as by a different degree of sensitivity of the statistical character-
istics to the influence of noise.

In the rigorous theory, hyperbolic chaos is often called “true” chaos and is char-
acterized by a homogeneous and topologically stable structure [1, 2, 3, 4]. However,
strange chaotic attractors of dynamical systems are not, as a rule, robust hyper-
bolic sets. Rather they are referred to as nearly hyperbolic attractors; for example,
the Lorenz attractor. Nearly hyperbolic (quasihyperbolic) attractors include some
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nonrobust orbits (for example, separatrix loops), but their appearances and dis-
appearances often do not affect the observed characteristics of chaos, such as a
phase portrait, the power spectrum, Lyapunov exponents, and others. Dynamical
systems in a chaotic regime may give rise to an invariant measure that does not
depend on an initial distribution and fully reflects the statistical properties of the
attractor. The existence of an invariant measure has been theoretically proven for
hyperbolic and nearly hyperbolic systems [5, 6, 7, 8, 9, 10].

However, most chaotic attractors that we deal with in numeric simulation and
real experiments are nonhyperbolic [11, 12, 13]. The problem of the existence of an
invariant measure on a nonhyperbolic chaotic attractor involves serious difficulties
because it is generally impossible to obtain a stationary probability distribution that
is independent of an initial distribution. A nonhyperbolic attractor is a maximal
attractor of the dynamical system and encloses a countable set of regular and
chaotic attracting subsets [11, 12]. When δ-correlated Gaussian noise is added
to the system, an invariant measure on such attractors exists too [14]. In the
nonhyperbolic case the behavior of phase trajectories is significantly affected by
noise [15, 16, 17, 18] while it changes only slightly in systems with hyperbolic and
nearly hyperbolic chaos [15, 16, 19, 20].

A statistical description of noisy nonhyperbolic chaotic attractors is an important
and still unsolved problem of the dynamical systems theory. One of the topical
problems in this direction is to study the relaxation to stationary distributions in
time. A number of fundamental questions still have unclear answers. What is
a real relaxation time of the system to a stationary distribution? Which factors
define this time? Which characteristics can quantify the relaxation time to the
stationary measure? What is the role of the noise statistics and the noise intensity in
regularities of the relaxation to the stationary distribution? Is there any connection
between the relaxation process and the system dynamics? These problems are
studied in [21, 22] with the methods of computer simulation.

The relaxation to a stationary distribution is described by the evolutionary op-
erator that can be represented by the Fokker–Planck operator or the Frobenius–
Perron operator. The eigenvalues and eigenfunctions of the evolutionary operator
determine the rate and character of the relaxation process and characteristics of
mixing, which are related to the relaxation to an invariant probability measure.
However, if the dynamical system is high-dimensional (N ≥ 3), the nonstation-
ary solution of the Fokker–Planck equation is difficult to find even numerically.
Therefore, the method of stochastic differential equations was used in the studies
described in [21, 22].

As is commonly known, chaotic dynamics means the presence of mixing and,
consequently, is characterized by the positive Kolmogorov entropy. The presence
of mixing causes autocorrelation functions (ACF) to decay to zero for large times
(correlation splitting). This implies that the system states separated by a suffi-
ciently large time interval become statistically independent [6, 8, 23, 24, 25]. From
the property of mixing it follows that a dynamical system is ergodic. For chaotic
dynamical systems the splitting of correlations in time is connected with an in-
stability of chaotic trajectories and with the system property to produce entropy
[6, 8, 23, 24, 25, 26, 27]. In spite of their significant importance, correlation proper-
ties of chaotic processes have been studied insufficiently. It is widely believed that
autocorrelation functions of chaotic systems exponentially decrease at a rate being
defined by the Kolmogorov entropy [23]. The Kolmogorov entropy, HK, in turn is
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bounded from above by the sum of positive Lyapunov exponents [8, 27, 28]. But
this estimation is true only for some special cases.

It has been proven for some classes of discrete maps (expanding and Anosov
ones), which exhibit a mixing invariant measure, that the decay of correlations
with time is bounded from above by an exponential function [9, 29, 30, 31]. There
are different estimations of the rate of this exponential decay, which are not always
connected with Lyapunov exponents [21, 32, 33, 34]. For continuous-time systems,
there are no theoretical results at all for estimating the rate of correlation splitting
[35].

The studies of specific chaotic systems testify to a complicated behavior of cor-
relation functions, which is defined not only by positive Lyapunov exponents but
also by different characteristics and peculiarities of the system chaotic dynamics
[21, 32, 34, 36].

In [37, 38, 39], the correlation and spectral properties of chaotic oscillations are
studied for several types of chaotic attractors that can be observed in autonomous
differential systems with three-dimensional phase space. Classical models of non-
linear dynamics, such as the Rössler oscillator [40], the Lorenz system [41], and the
Anishchenko–Astakhov oscillator that represents a mathematical model of a real
radiotechnical device [42, 43], were chosen for the studies. In the cited papers an
attempt was taken to answer several fundamental questions. Which peculiarities
of the system’s chaotic dynamics can define the rate of correlation decay and the
basic spectral line width? How does noise affect the spectral and correlation char-
acteristics of chaos? Using the results of numerical simulation, we would like to
show that in the context of correlation properties, different types of chaotic self-
sustained oscillations can be associated with basic models of stochastic processes,
such as harmonic noise and a telegraph signal.

The aim of this work is to present a brief review of the recent results reported in
[21, 22, 37, 38, 39]. The presented results concern the method of diagnosing nonhy-
perbolic chaos, the influence of noise on nonhyperbolic attractors, some probabilistic
aspects of chaotic dynamics (such as peculiarities of the relaxation to a stationary
probability distiribution), the rate of mixing, and the correlation and spectral anal-
ysis of chaotic regimes of different types. Special attention is paid to the effect of
noise on the statistical properties of chaotic dynamics.

2. Diagnostics of hyperbolicity in chaotic systems. Strange attractors in
finite-dimensional systems can be divided into three main classes: robust hyperbolic,
almost hyperbolic (quasi-hyperbolic) and nonhyperbolic [11, 12, 13]. The property
of robust hyperbolicity of a chaotic attractor means that all its trajectories are
of the same saddle type, and their stable and unstable manifolds are transversal
everywhere; that is, the structure of a hyperbolic attractor is homogeneous in ev-
ery point on the attractor. In addition, these properties are preserved under small
perturbations of the system’s parameters. However, robust hyperbolic attractors,
such as Smale-Williams’ solenoid [44] or Plykin’s attractor [45], are almost ideal
objects. The existence of robust hyperbolic attractor has been proven for none of
the dynamical systems defined in the form of differential equations or discrete maps.
Nevertheless, there are several examples of almost hyperbolic attractors, including
the Lorenz attractor [46] and the Shimizu-Morioka attractor [47] in flow systems,
and the Lozi attractor [48] and the Belykh attractor [49] in discrete maps. For
these systems, the presence of singular phase trajectories is typical; for example,
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the Lorenz attractor is characterized by the presence of a set of separatrix loops of
a saddle-type equilibrium point in its parameter space; the Lozi attractor encloses
nonrobust homoclinic curves without tangencies between some stable and unstable
manifolds. These singular trajectories do not lead to the birth of stable motions.
Given the behavior of experimentally observed characteristics, quasi-hyperbolic at-
tractors are quite similar to hyperbolic ones.

The majority of chaotic attractors of dynamical systems is, however, nonhyper-
bolic [11, 12, 13]. Nonhyperbolic attractors include chaotic limit sets as well as
stable periodic orbits. The latters are often difficult to detect in numerical ex-
periments because the size of their basins of attraction often appears to be below
the double precision of the computer resolution. Nevertheless, even in the pres-
ence of noise, the properties of nonhyperbolic attractors are essentially different
from those of hyperbolic attractors [13, 50, 51]. The diagnosis of the attractor
type is, therefore, very important from theoretical and practical viewpoints; it has
strong consequences for the analysis of nonlinear systems, especially for modeling
or shadowing [17, 52, 53, 54, 55, 56, 57].

A direct method for detecting if a chaotic system is hyperbolic, is to calculate the
angles φ between the stable and unstable manifolds along a trajectory in points x of
the chaotic attractor. A numerical procedure for calculating these φ was proposed
in [58] for diagnosing the hyperbolicity of chaotic saddles in 2-dimensional systems.
This method entails in the transformation of an arbitrary vector by the linearized
evolution operator along a trajectory forward and backward with allows one to find
the angle between the directions of stability and unstability for different points on
the chaotic sets.

Manifolds in two-dimensional systems are one-dimensional and the diagnostics
of homoclinic tangency has no principal difficulties. For three-dimensional systems
the procedure becomes more complicated because in this case manifolds are two-
dimensional. In [59], we proposed a method for diagnosing the hyperbolicity for
three-dimensional differential systems. It was experimentally established that such
systems as the Rössler system, Chua’s circuit [60], and the Anishchenko–Astakhov
oscillator are typically nonhyperbolic ones; that is, they are structurally unstable
[11]. The Lorenz system can be treated as an exceptional case. In a certain param-
eter range the Lorenz attractor is nearly hyperbolic. Stable and unstable manifolds
of the attractor trajectory intersect transversally. This property is preserved in the
presence of small external noise [59]. However, the Lorenz attractor demonstrates
a bifurcational transition into the nonhyperbolicity mode [61]. This effect can be
diagnosed by calculating the angles between the manifolds. Figure 1a shows the
angle probability distribution p(φ) for the classical Lorenz attractor that is realized
in the following system [41]:

ẋ = −σ(x− y), ẏ = rx− y − xz, ż = −βz + xy. (1)

As seen from the first plot, the probability of homoclinic tangency is rigorously
equal to zero (p(φ) = 0). The escape from the region where the Lorenz attractor
exists leads to the appearance of the effect of homoclinic tangency (Fig. 1b). In this
case, we observe that for r ≥ 38 the angle between the manifolds becomes equal to
zero (Fig. 1b). This effect mainly explains the properties and peculiarities of chaos,
which are discussed in further sections of this paper. Our numeric results have
also shown that the presence of small additive noise sources does not significantly
affect the structure of angle probability distributions for either nearly hyperbolic
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Figure 1. Calculation results for the Lorenz system (1) for σ = 10
and b = 8/3. (a) The angle probability distribution for the Lorenz
attractor with r = 27; (b) the dependence of minimal angle φmin

on parameter r. The dashed line denotes the theoretical onset of
the trasition from the Lorenz attractor to nonhyperbolic attractors.

and nonhyperbolic attractors. The character of a chaotic set remains the same
under influence of noise [59].

3. Chaos in the presence of noise. Stochastic nonlinear problems are of fun-
damental and practical importance. They can be treated as a natural extension
of the nonlinear dynamics problems. The presence of noise in a system requires a
transition to a statistical description. There are two main approaches to studying
stochastic systems [62, 63, 64, 65]. The first one is based on solving stochastic
equations (SE) and is also called Langevin’s method. Each particular solution of
SE, even with the same initial state, produces a new realization of a random pro-
cess. By this means, one is able to obtain a statistical ensemble of a great number
of realizations and to find its intrinsic statistical characteristics. In practice, time
averaging along a single, long-enough realization is often used, assuming that the
process is ergodic. The second approach consists of solving evolution equations –
called the Chapman–Kolmogorov equation, the kinetic equation, or the Fokker–
Planck equation – for the probability measure. However, the process in a system
should be at least Markovian, which imposes certain requirements on the noise
sources. For theprocess to be Markovian, random kicks must be statistically in-
dependent. In this case the Chapman–Kolmogorov equation holds. If the noise
possesses Gaussian properties, the process is diffusive; therefore, for the probability
density we can write the Fokker–Planck equation. Under appropriate definitions of
noise sources, the method of SE and the method of evolution equations must yield
the equivalent statistical description of the system [62, 63, 64, 66].

Of special interest is the problem of statistical characteristics of dynamical chaos
and of the role of fluctuations in chaotic systems [6, 7, 19, 42, 66, 67, 68, 69, 70]. For
systems with chaotic dynamics of the hyperbolic type, the transition to a statistical
description already is possible in a purely deterministic case; that is, without noise
[6, 7, 19, 70]. This means that the stationary solution of the evolution equation
for the probability density allows the presence of the limit D → 0, where D is
the noise intensity, and there is the possibility of deducing an expression for the
probability measure in a purely deterministic case. As shown in [6, 19], small
fluctuations (D � 1) in hyperbolic systems cause small changes of the structure of
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the probability measure. So-called quasi-hyperbolic (almost hyperbolic) attractors,
such as the Lozi attractor and the Lorenz attractor [11, 12], behave in a similar
manner. Almost hyperbolic attractors enclose non-robust singular trajectories, for
example, separatrix loops in the Lorenz attractor. Nevertheless, these attractors, as
well as hyperbolic ones, do not contain stable periodic orbits. The characteristics of
quasi-hyperbolic attractors, measured in numerical experiments, are robust relative
to small perturbations of the evolution operator. Particularly, there is a rigorous
proof for the existence of the probability measure of the Lorenz attractor without
noise [7]. A system’s own dynamics proves to be much stronger than that imposed
from outside by external noise [6].

In nonhyperbolic systems the effect of noise can play a significant role. In [16]
it was shown that the mean distance between a noisy orbit and the noiseless non-
hyperbolic attractor appears to be significantly larger than that in the hyperbolic
case and depends on the information dimension of the attractor. It is well known
that in systems with nonhyperbolic attractors noise can induce various phase tran-
sitions [42, 43, 71, 72]. When Gaussian noise sources are added to a system, basins
of attraction of all the system’s attractors can merge. As a result, a unified sta-
tionary probability density appears, independent of the initial state [14]. However,
the statistical description of nonhyperbolic chaos encounters principal difficulties.
In general, there is no stationary probability measure on nonhyperbolic chaotic
attractors without noise, independent of the initial distribution. In this case the
continuous limit transition D → 0 does not exist for the probability density of noisy
nonhyperbolic systems [14]. Moreover, the probability characteristics of nonhyper-
bolic chaos are very sensitive to even the slightest changes of the system parameters
[13, 42, 59, 73].

4. Relaxation to a stationary probability distribution of chaotic attrac-

tors in the presence of noise.

4.1. Models and numerical methods. Let us consider chaotic attactors of well-
known model systems, such as the Rössler oscillator [40]

ẋ = −y − z +
√

2Dξ(t), ẏ = x+ ay, ż = b− z(m− x), (2)

and the Lorenz system (1) [41] with noise

ẋ = −σ(x− y) +
√

2Dξ(t), ẏ = rx− y − xz, ż = −βz + xy. (3)

In both models, ξ(t) is a Gaussian white noise source with the mean value 〈ξ(t)〉 ≡ 0
and correlation 〈ξ(t)ξ(t+ τ)〉 ≡ δ(τ), where δ() is Dirac’s function. The parameter
D denotes the noise intensity. For the Rössler system, we fix a = 0.2 and b = 0.2
and vary the control parameterm in the interval [4.25, 13]. In the Lorenz system, we
choose two different regimes, namely, a quasi-hyperbolic attractor (σ = 10, β = 8/3,
and r = 28) and a nonhyperbolic attractor (σ = 10, β = 8/3, and r = 210).

Chaotic attractors of systems (2) and (3) have been studied in detail and are
typical examples of quasi-hyperbolic and nonhyperbolic chaos [43, 74]. Thus, results
obtained for Equations (2) and (3) can be generalized to a wide class of dynamical
systems.

To examine the relaxation to a stationary distribution in these systems, we
analyze how points situated at an initial time in a cube of small size δ around an
arbitrary point of the trajectory belonging to an attractor of the system evolve with
time. We take δ = 0.09 for the size of this cube and fill it uniformly with n = 9000
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points. As time goes on, these points in the phase space are distributed throughout
the whole attractor. To characterize the convergence to the stationary distribution
we follow the temporal evolution of this set of points and calculate the ensemble
average

x̄(t) =

∫

W

p(x, t)x dx =
1

n

n
∑

i=1

xi(t). (4)

Here, x is one of the system dynamical variables, and p(x, t) is the probability
density of the variable x at the time t which corresponds to the chosen initial dis-
tribution. It is known that the phase trajectory of system (3) visits neighborhoods
of two saddle-foci. In this case, when calculating x̄(t) one may first sum separately
over points having fallen in the neighborhood of each saddle-focus, and then com-
bine the obtained results. However, the mean value appears to approach zero in a
short time interval, and its further evolution is badly detected. To follow the relax-
ation in system (3), we compute the mean value when points in the neighborhood
of only one saddle-focus are taken into account. In this case the relaxation to this
quantity goes more slowly in time. Then we calculate the function γ(tk):

γ(tk) = |x̄m(tk+1) − x̄m(tk)|, (5)

where x̄m(tk) and x̄m(tk+1) are successive extrema of x̄(t). Thus, γ(tk) character-
izes the amplitude of the mean value oscillations. In expression (5), tk and tk+1

are successive time moments corresponding to the extrema of x̄. The temporal
behavior of γ(tk) allows us to judge the character and the rate of relaxation to the
probability measure on the attractor. We also calculate the maximal Lyapunov
exponent (LE) λ1 of a chaotic trajectory on an attractor. We also compute the
normalized autocorrelation function (ACF) of steady-state oscillations x(t):

Ψ(τ) = ψ(τ)/ψ(0), ψ(τ) = 〈x(t)x(t+ τ)〉 − 〈x(t)〉〈x(t+ τ)〉. (6)

The brackets 〈. . .〉 denote time averaging.
To make some figures more informative and compact, instead of γ(tk) and Ψ(τ),

we plot (where it is necessary) their envelopes γ0(tk) and Ψ0(τ), respectively.

4.2. Relaxation to a stationary distribution in the Rössler system: Mech-

anism of the effect of noise on the rate of mixing. A chaotic attractor re-
alizing in the Rössler system (2) at fixed a = b = 0.2 and in the parameter m
interval [4.25, 8.5] serves as a well-known example of a spiral attractor. The phase
trajectory on the spiral attractor rotates with a high regularity around one or sev-
eral saddle-foci. The autocorrelation function is oscillating and the power spectrum
exhibits narrow-band peaks corresponding to the mean rotation frequency, its har-
monics and subharmonics. By virtue of these properties, spiral chaos is called
phase-coherent [43, 75, 76, 77].

The chaotic attractor of system (2) is qualitatively changing as the parameter
m increases. In the interval 8.5 < m < 13, a nonhyperbolic attractor of the non-
coherent type, called a funnel attractor occurs [42, 76]. Phase trajectories on the
funnel attractor make complicated loops around a saddle-focus and thus, demon-
strate a non-regular rotation behavior. Consequently, the autocorrelation function
of noncoherent chaos decreases much more rapidly than that in the coherent case,
and the power spectrum does not already contain sharp peaks.

The calculations performed for m ∈ [4.25, 7.5] (spiral chaos) and for m ∈ [8.5, 13]
(noncoherent chaos) allow us to assume that an invariant probability measure exists
for the parameter values considered. All the effects being observed for each type of
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attractor in system (2) are qualitatively preserved when the parameter m is varied.
In our numeric simulation, we fix m = 6.1 for the spiral attractor and m = 13 for
the funnel attractor.

Figure 2 shows the typical behavior of γ0(t) for the spiral and the funnel attractor
of the Rössler system. We find that the noise significantly influences the rate of
mixing in the regime of spiral attractor in the Rössler system. The relaxation
time is strongly decreasing for increasing noise intensity (see Fig. 2a). We find a
quite different situation for the funnel attractor. Noncoherent chaos is practically
insensitive to noise perturbations. Behavior of γ0(tk) does not significantly change
when noise is added to Equations (2) (see Fig. 2b). At the same time, it is well
known that noncoherent chaos exhibits a close similarity to random processes. This
fact can be verified; for example, by means of the autocorrelation function Ψ(τ)
for the spiral and the funnel attractors in system (2) (Fig. 3). Our numerical
experiments show that the correlation times are essentially different for these two
chaotic regimes: without noise they differ by two orders. On the one hand, in the
case of coherent chaos the correlation time decreases dramatically in the presence
of noise (Fig. 3a). On the other hand, the autocorrelation function for the funnel
attractor in the deterministic case practically coincides with that in the presence of
noise (Fig. 3b). Hence, noncoherent chaos, which is nonhyperbolic, demonstrates
some property of hyperbolic chaos, i.e. “dynamical stochasticity” turns out to
be much stronger than that imposed from an external (additive) one [6]. This
experimental result is interesting and requires a more detailed consideration.

It is also worth noting another finding of our simulations. We have found that
the positive LE for the spiral chaos and the funnel chaos is weakly sensitive to
fluctuations (see Fig. 4), and decreases somewhat with increasing noise intensity,
although in certain cases the correlation time changes considerably under the influ-
ence of noise. Thus, in the regime of spiral chaos, the rate of mixing is not uniquely
determined by the largest LE but depends strongly on the noise intensity.

We suppose that the essential effect of noise on relaxation to the stationary
distribution in the regime of spiral chaos may be associated with peculiarities of
the phase trajectory rotation around a saddle-focus. Since the trajectory rotates
almost regularly on the spiral attractor, the relaxation process appears to be very
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Figure 2. Behavior of γ0(tk) for attractors in the Rössler system
(2). (a) For the spiral attractor (a = b = 0.2, m = 6.1) for D = 0
(curve 1), D = 0.001 (curve 2), and D = 0.1 (curve 3); (b) For the
funnel attractor (a = b = 0.2, m = 13) for D = 0 (solid line) and
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long. The addition of noise to the system destroys the relative regularity of the
trajectory and, consequently, the rate of mixing significantly increases.

It is known that for chaotic oscillations one can introduce the notion of instanta-
neous amplitude and phase [77]. The instantaneous phase characterizes the rotation
of a trajectory around a saddle-focus. System (2) is of such type because the tra-
jectory in the (x, y) projection rotates around the unique saddle-focus located very
near to the origin. Let us introduce the substitution of variables

x(t) = A(t) cos Φ(t), y(t) = A(t) sin Φ(t), (7)

which defines the amplitude A(t) and the total phase Φ(t) of the chaotic oscillations.
Then the instantaneous phase Φ(t) can be calculated as follows:

Φ(t) = arctan
y(t)

x(t)
+ πn(t), (8)

where n(t) = 0, 1, 2, . . . is the number of intersections of the phase trajectory with
the plane x = 0.

The component of mixing along the flow of trajectories is related to the diver-
gence of the instantaneous phase values and thus, is determined by the temporal
behavior of the phases. The instantaneous phases of an ensemble of initially close
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trajectories on the spiral attractor remain very close to each other over a long pe-
riod of time, although the points in the secant plane are spread over the whole
attractor section. In this case the relaxation to a stationary probability distribu-
tion on the whole attractor of a flow system will be much longer than that in the
Poincaré map. The violation of regular rotation of trajectories is characteristic for
the funnel attractor and leads to a nonmonotonic dependence of the intantaneous
phase on time. The phase trajectory creates complicated loops at nonequal time
intervals that causes the value of the current phase to slightly decrease. This re-
sults in a rapid divergence of the phase values of neighboring trajectories. The
influence of noise on spiral chaos leads to similar effects. Figure 5a shows the tem-
poral dependences of the variance σ2

Φ of the instantaneous phase on an ensemble of
initially close trajectories for the spiral and the funnel attractor of system (2). We
observe that in the noisy and the noise-free cases the variance grows almost linearly
on the time intervals being considered. The fact that the temporal dependence of
the instantaneous phase variance of the chaotic oscillations in the Rössler system
is a linear function was assumed in [75]. Nevertheless, this suggestion was not
confirmed theoretically, numerically, or experimentally. In the case of spiral chaos
without noise (curve 1), the value of σ2

Φ is small (on the given time interval it does
not exceed the variation of the uniform phase distribution on the interval [−π;π])
and increases much slower than in the other cases considered. The linear growth
of the variance allows us to estimate the divergence of the intantaneous phases by
using the effective diffusion coefficient:

Beff =
〈1

2

dσ2
Φ(t)

dt

〉

, (9)

where the angle brackets denote time averaging.
Figure 5b illustrates the dependences of Beff of the instantaneous phase of chaotic

oscillations on the noise intensity for the spiral and the funnel attractor in the
Rössler system (2). In both cases, Beff grows with increasing D, but for spiral
chaos this growth is more significant. This result strongly testifies that Beff is a
very effective characteristic for diagnosing the statistical properties of a chaotic
attractor.
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(curve 3), D = 0.1 (curve 4]; (b) The effective diffusion coefficient
Beff as a function of the noise intensity D for spiral (curve 1) and
noncoherent (curve 2) chaos.
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4.3. Relaxation to a probability measure in the Lorenz system. Well-
known quasi-hyperbolic attractors in three-dimensional continuous-time systems,
such as the Lorenz attractor and the Shimizu-Morioka attractor [47], are attractors
of the switching type. The phase trajectory switches chaotically from the neigh-
borhood of one saddle equilibrium state to the neighborhood of another one. Such
switchings are accompanied by chaotic phase changes even without noise. In this
case the addition of noise does not change considerably the phase dynamics and,
consequently, does not influence the rate of relaxation to the stationary distribution.

Figure 6 shows the behavior of γ0(tk) for both quasi-hyperbolic and nonhyper-
bolic chaotic attractors of system (3) with and without noise added. We find that
for the Lorenz attractor noise does not significantly influence the relaxation rate
(Fig. 6a). However, we observe a quite different situation for the nonhyperbolic
attractor in the Lorenz system: The rate of relaxation is strongly affected by noise
(Fig. 6b).
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γ0(   )
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Figure 6. Behavior of γ0(tk) for chaotic attractors in the Lorenz
system (3). (a) For r = 28 and D = 0 (solid line) and for D = 0.01
(dotted line); (b) For r = 210 and D = 0 (thick line), and for
r = 210 and D = 0.01 (thin line). Other parameters are σ = 10,
β = 8/3.

Next, we will check whether the other characteristics of the mixing rate, such
as the LE and the correlation time, will also depend on noise perturbations. For
the same chaotic attractors in the Lorenz system we compute the largest LE λ1

and estimate the normalized autocorrelation function Ψ(τ), τ = t2 − t1, of the
dynamical variable x(t) for different noise intensities D. We find that for both types
of chaotic attractors the LE does not depend within the calculation accuracy on the
noise intensity. The autocorrelation function of the quasi-hyperbolic attractor is
essentially unaffected by noise (Fig. 7a). However, in the regime of a nonhyperbolic
attractor it decreases more rapidly in the presence of noise (see curves in Fig. 7b).

5. Correlation and spectral analysis of dynamical chaos. Let us now ex-
amine correlation and spectral properties of different types of chaotic oscillations
in more details. Experience of the studies of dynamical chaos in three-dimensional
differential systems shows that two classical models of random processes can be
used to describe the correlation and spectral properties of a certain class of chaotic
systems. They are the models of harmonic noise and a telegraph signal. As we will
demonstrate below, the model of harmonic noise represents sufficiently well corre-
lation characteristics of spiral chaos, while the model of telegraph signal is quite
suitable for studying statistical properties of attractors of the switching type, such
as attractors in the Lorenz system [41] and in the Chua circuit [60].
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Figure 7. Envelopes of the normalized autocorrelation function
Ψ0(τ) for attractors in system (3). (a) r = 28 and D = 0 (solid
line), and D = 0.01 (dotted line); (b) r = 210, D = 0 (solid line),
and D = 0.01 (dotted line).

In the following, we summarize the main characteristics of the above mentioned
classical models of random processes.
Harmonic noise is a stationary random process with zero mean. It is represented
as follows [78, 79, 80]:

x(t) = R0[1 + α(t)] cos[ω0t+ φ(t)], (10)

where R0 and ω0 are constant (average) values of the amplitude and frequency
of oscillations, respectively; α(t) and φ(t) are random functions that characterize
amplitude and phase fluctuations, respectively. The process α(t) is assumed to be
stationary. Several simplifying assumptions that are most often used are as follows:
(i) the amplitude and phase fluctuations are statistically independent, and (ii) the
phase fluctuations φ(t) represent a Wiener process with a diffusion coefficient B.
Under the assumptions made, the ACF of process (10) can be written as follows
[78, 79, 80]:

ψ(τ) =
R2

0

2
[1 +Kα(τ)] exp(−B|τ |) cosω0τ, (11)

where Kα(τ) is the covariation function of reduced amplitude functions α(t) 1.
Using the Wiener–Khinchin theorem, one can derive the corresponding expressions
for the spectral power density.
Generalized telegraph signal. This process describes random switchings between
two possible states x(t) = ±a. Two main kinds of telegraph signal are usually
considered, namely, random and quasi-random telegraph signals [80, 81]. A random
telegraph signal is characterized by a Poissonian distribution of switching moments
tk. The latter leads to the fact that the impulse duration θ has the exponential
distribution:

ρ(θ) = n1 exp(−n1θ), θ ≥ 0, (12)

where n1 is the mean switching frequency. The ACF of such a process can be
represented as follows:

ψ(τ) = a2 exp(−2n1|τ |). (13)

Another type of telegraph signal (a quasi-random telegraph signal) corresponds
to random switchings between the two states x(t) = ±a, which can occur only in

1Prefactor R2
0[1 + Kα(τ)] is the covariation function KA(τ) of the random amplitude A(t) =

R0[1 + α(t)]. This notion is most convenient to use in our future studies.
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discrete time moments tn = nξ0 + α, n = 1, 2, 3, . . ., where ξ0 = const and α is a
random quantity. If the probability of switching events is equal to 1/2, then the
ACF of this process is given by the following expression:

ψ(τ) = a2

(

1 − |τ |
ξ0

)

, if |τ | < ξ0;

ψ(τ) = 0, if |τ | ≥ ξ0. (14)

5.1. Correlation and spectral analysis of spiral chaos. ¿From a physical
viewpoint, chaotic attractors of the spiral type possess the properties of a noisy
limit cycle. However, spiral attractors are realized in fully deterministic systems;
that is, without external fluctuations. Consider the regime of spiral chaos in the
Rössler system (2) for a = b = 0.2 and m = 6.5. Let us introduce the instantaneous
amplitude A(t) and phase Φ(t) according to the relations (7). We calculate the
normalized autocorrelation function of the chaotic oscillations x(t) (grey dots 1),
the covariance function of the amplitude KA(t) and the effective phase diffusion co-
efficient Beff . Figure 8 shows the results for Ψx(τ) in system (2) both without noise
and in the presence of noise.The ACF decays almost exponentially both without
noise (Fig. 8a) and in the presence of noise (Fig. 8b). Additionally, as seen from
Fig. 8c, for τ < 20 there is an interval on which the correlations decrease much
faster. Using Equation (11), we can approximate the envelope of the calculated
ACF Ψx(τ). To do this, we substitute the numerically computed characteristics
KA(τ) and B = Beff into an expression for the normalized envelope Γ(τ):

Γ(τ) =
KA(τ)

KA(0)
exp (−Beff |τ |). (15)
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Figure 8. Normalized ACF of the x(t) oscillations in system (2)
for m = 6.5 (dots 1) and its approximation by expression (15)
(curves 2) for D = 0 (a) and D = 10−3 (b). (c) The envelopes of
ACF in a linear-logarithmic scale for D = 0 (curve a), D = 0.001
(curve b), and D = 0.01 (curve c).
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The calculation results for Γ(τ) are shown in Figs. 8a and 8b by curves 2. Equa-
tion (15) sufficiently describes the behavior of the envelope of Ψx(τ). Note that
taking into account the multiplier KA(τ)/KA(0) enables us to obtain a good ap-
proximation for all times τ . This means that the amplitude fluctuations play a
significant role on short timeintervals, while the slow process of the correlation de-
cay is mainlydetermined by the phase diffusion. Thus, we can observe a surprisingly
good agreement between the numerical results for the spiral chaos and the data for
the classical model of harmonic noise. At the same time, it is quite difficult to ex-
plain rigorously the reason for such a good agreement. Firstly, the relationship (11)
was obtained by assuming the amplitude and phase values to be statistically inde-
pendent. However, this approach cannot be applied to a chaotic regime. Secondly,
when deriving (11), we used the fact that the phase fluctuations are described by
a Wiener process. In the case of chaotic oscillations, Φ(t) is a more complicated
process, and its statistical properties are unknown. It is especially important to
note that the findings presented in Fig. 8a were obtained in the regime of purely
deterministic chaos; that is, without noise in the system.

We have shown that for τ > τcor the envelope of the ACF for the chaotic oscilla-
tions can be approximated by the exponential law exp(−Beff |τ |). Then according to
the Wiener–Khichin theorem, the spectral peak at the average frequency ω0 must
have a Lorenzian shape and its width is defined by the effective phase diffusion
coefficient Beff :

S(ω) = C
Beff

B2
eff + (ω − ω0)2

, C = const. (16)

The calculation results presented in Fig. 9 justify this statement. The basic spectral
peak is approximated by using (16) and this fits quite well with the numerical results
for the power spectrum of the x(t) oscillations. We note that the findings shown in
Figs. 8 and 9 for the noise intensity D = 10−3 have also been verified for different
values of D, 0 < D < 10−2, as well as for the range of parameter m values that
correspond to the regime of spiral chaos.
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Figure 9. A part of the normalized power spectrum of x(t) os-
cillations in system (2) for a = b = 0.2, and m = 6.5 (solid line)
and its approximation by Equation (16) (dashed line) for the noise
intensity D = 10−3.

Our findings for the approximation of the ACF and the shape of the basic spectral
peak are completely confirmed by our investigations of spiral attractors in other
dynamical systems [38, 39].
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5.2. Correlation characteristics of the Lorenz attractor. In the previous sec-
tion we have used the effective phase diffusion coefficient to describe the correlation
properties of the Rössler system and the Anishchenko–Astakhov oscillator. How-
ever, such an approach cannot be applied to approximate autocorrelation functions
of chaotic oscillations of a switching type. Some chaotic attractors demonstrating
a rather complex structure can contain certain regions that are separated by man-
ifolds of saddle points and cycles. Transitions (switchings) between these regions
can occur provided that certain conditions are fulfilled [82]. Such oscillations can
be observed, for example, in the Lorenz system [41]. Let us consider the Lorenz
system in the regime of the quasi-hyperbolic attractor for r = 28, σ = 10, and
b = 8/3.

In the phase space of the Lorenz system there are two saddle-foci that are sym-
metrical about the z-axis and are separated by the stable manifold of a saddle
point in the origin. This stable manifold has a complex structure that allows the
trajectories to switch between the saddle-foci in specific paths [11, 82] (see Fig. 10).
Unwinding about one of the saddle-foci, the trajectory approaches the stable man-
ifold and then can jump to the other saddle-focus with a certain probability. The
rotation about the saddle-foci does not contribute considerably to the decay of the
ACF, while the frequency of ”random” switchings essentially affects the rate of the
ACF decay. Consider the time series of the x coordinate of the Lorenz system, that
is shown in Fig. 11. If one introduces a symbolic dynamics; that is, one excludes
the rotation about the saddle-foci, one obtains a telegraph-like signal. Figure 12
shows the ACF of the x(t) oscillations for the Lorenz attractor and the ACF of the
corresponding telegraph signal. Comparing these two figures, we can state that the
time of the correlation decay and the behavior of the ACF on this time scale are
predominantly determined by switchings, whereas the rotation about the saddle-
foci makes a minor contribution to the ACF decay on large times. It is worth noting
that the ACF decreases linearly on short times. This fact is remarkable. because
the linear decay of the ACF corresponds to a discrete equidistant residence time
probability distribution in the form of delta-peaks. Additionally, the probability of
switchings between the two states is equal to 1/2 [80, 81].

Figure 13 shows the residence time distribution calculated for the telegraph signal
resulting from switchings in the Lorenz system. As Fig. 13a shows, the residence

Figure 10. Qualitative illustration of the structure of manifolds
in the Lorenz system
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Figure 11. Telegraph signal (solid curve) obtained for the x(t)
oscillations (dashed curve) of the Lorenz system at σ = 10, β =
8/3, and r = 28.
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Figure 12. The ACF of the x(t) oscillations (a) and of the tele-
graph signal (b).

time distribution in the two attractor regions has a structure that is quite similar to
an equidistant discrete distribution. At the same time the peaks are characterized
by a finite width. Figure 13b represents the probability distribution of switchings
that occur at multiples of ξ0, where ξ0 is the minimal residence time in one of the
states. This dependence shows that the probability of transition at time ξ0 is close
to 1/2. The discrete character of switchings can be explained by peculiarities of the
structure of the manifolds of the Lorenz system (see Fig. 10). In the vicinity of the
origin x = 0, y = 0, the manifolds split into two leaves. This leads to the fact that
the probability of switchings between the two states in one revolution about the
fixed point is approximately equal to 1/2. This particular aspect of the dynamics
ensures that the ACF of the x(t) and y(t) oscillations on the Lorenz attractor has
the form defined by expression (14). However, the finite width of the peaks in
the distribution and deviations from the probability 1/2 can lead to an ACF that
decays to a certain finite, nonvanishing value.

6. Autocorrelation function and power spectrum of spiral chaos in a

physical experiment. The experiments were conducted on an experimental unit
that consisted of a radio-technical generator with inertial nonlinearity (the Anish-
chenko–Astakhov oscillator) [43] having the basic frequency 18.5 kHz, a com-
puter with a fast analog-digital convertor (ADC) with the discretization frequency
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Figure 13. The distribution of impulse durations of the telegraph
signal (a) and probabilities of transitions at times multiple to ξ0
(b).

694.5 kHz, and a Gaussian broadband noise generator with a frequency range from
0 kHz to 100 kHz [83]. The behavior of the ACF was also analyzed in the presence
of noise. With this purpose, a broadband noise from the external noise generator
was applied to the system, and the noise intensity can be varied. The oscillator with
inertial nonlinearity is described by a simple three-dimensional dynamical system:

ẋ = mx+ y − xz − δx3, ẏ = −x, ż = −gz + gI(x)x2, I(x) =

{

1, x > 0,
0, x ≤ 0.

(17)

The system (17) can demonstrate the regimes of spiral chaos for certain values of
parameters m and g [43].

The first important question to be uniquely answered by the experiment is
whether a Wiener process approach can be applied to describe the phase of the
x(t) process, as assumed in [21, 37, 39, 75]. To define the diffusion coefficient Beff ,
the instantaneous phase is introduced by using an analytical signal concept and
performing the Hilbert transform for experimental realizations x(t) [77]. Then the
phase variance σ2

Φ(t) is calculated by averaging over an ensemble of N realizations.
The effective phase diffusion coefficient is defined by the rate of the variance growth
in time. The temporal dependence of the phase diffusion shown in Fig. 14 is not
rigorously linear as it must be observed for the Wiener process. However, the lin-
ear growth dominates over small-scaled oscillations of the phase variance. Thus,
the process under consideration can be related to a Wiener process with diffusion
coefficient Beff . The linear dependence defining the effective diffusion coefficient is
found by the least-square method.

The next step in our experiment is to measure the ACF of chaotic oscillations
of the oscillator with inertial nonlinearity. Several tens of the signal x(t) realiza-
tions, each of 10 sec duration, were registered by the fast ADC. The total length
of realization is 3 ÷ 5 × 105 oscillation periods with the discretization step ∆t cor-
responding to 37 points per period. The ACF is calculated as follows. First, we
compute the time-average value of the x variable for each of the N realizations of
the x(t) process:

x̄ =
1

n

n
∑

i=1

x(ti). (18)
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Figure 14. Temporal dependence of the phase variance in the
presence of noise with a root-mean square value of the noise inten-
sityD = 0.001 mV and its linear approximation by the least-square
method (time t is a dimensionless variable and equals to the num-
ber of periods of oscillations).

Then, we find the mean product 〈(x(t)x(t+ τ))〉 by averaging over time:

Kl(τ) =
1

p

p
∑

i=1

x(ti)x(ti + k∆t), τ = k∆ti, k = 0, 1, . . . , n− p, (19)

where l = 1, . . . , N is the number of realization. When calculating one may en-
counter a problem that is connected to the limitation of a number of x(ti) values,
i = 1, 2, . . . , n, that are stored in the ADC buffer. The time-averaging result is con-
verged if the number of averagings p is sufficiently large. On the other hand, the
larger the chosen p, the smaller the time τmax = (n− p)∆t for the ACF estimation.
Becuase the rate of correlation splitting is not high in the regime being considered,
the ACF must be computed on a very large time interval. For this reason, the
value of p was chosen to be not too large. To attain a high precision of the ACF
calculation the obtained data were further averaged over N realizations:

ψ(τ) =
1

N

N
∑

l=1

Kl(τ) − x̄2. (20)

The ACF was normalized on its maximal value at τ = 0; that is, Ψ(τ) = ψ(τ)/ψ(0).
Figure 15 illustrates logarithmic plots of normalized ACF envelopes that were
found experimentally for different values of the external noise intensity. The ob-
tained dependences were approximated according to the exponential law Ψapp(τ) =
exp(−Beffτ), where Beff is the experimentally found effective diffusion coefficient of
the instantaneous phase. The approximation plots are shown in Fig. 15 by symbols.

Now let us analyze the results of the power spectrum measurements. The power
spectrum of a diffusive process looks like a Lorenzian having the width that is
defined by the effective phase diffusion coefficient. For the normalized spectrum
the Lorenzian is given by expression (16). In experiment, the effective diffusion
coefficient can be independently defined by measuring the spectral peak width. To
obtain a more precise value of the diffusion coefficient, we approximate the spectral
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Figure 15. ACF envelopes (solid lines) obtained experimentally
for different root-mean-square values of the external noise intensity:
1 – D = 0, 2 – D = 0.0005 mV, and 3 – D = 0.001 mV; and their
exponential approximations (dashed lines) with the decrement of
decay Beff = 0.00024, Beff = 0.00033, and Beff = 0.000439, respec-
tively. The other parameters for numeric calculations are N = 100,
n = 262144, and p = 1/2n.

peak with the formula (16) by varying Beff . The resulting value of the coefficient
will be the one at which the approximation error is minimal (see Fig. 16a).

Figures 16a and 16b illustrates parts of the experimental power spectra of the
GIN without and in the presence of external noise sources. The spectrum was
calculated by means of a standart FFT method with averaging. The window length
was about 218 points, and the total number of windows was about 50. The main
result is that the effective phase diffusion coefficient values estimated from the
spectra correspond with the values obtained from the linear approximation of the
growth of the instantaneous phase variance. The corresponding phase diffusion
coefficient values are given in Table 1 for three different levels of the external noise.
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Figure 16. (a) Experimental power spectrum of the x(t) oscilla-
tions in system (17) and its theoretical approximation by (16) with
Beff = 0.00033 in the presence of noise with D = 0.0005; and (b)
Power spectra for D = 0.001 (curve 1) and D = 0 (curve 2).
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D, mV Beff (Hilbert) Beff (Spectrum)
0 0.000244 0.000266

0.0005 0.00033 0.000342
0.001 0.000439 0.000443

Table 1. Comparison of phase diffusion coefficient values ob-
tained by different methods without and in the presence of noise
with different intensities.

Thus, it has been experimentally established that in the regime of spiral chaos the
instantaneous phase variance of chaotic oscillations grows, on average, linearly with
the diffusion coefficient Beff . Without noise this coefficient is defined by the chaotic
dynamics of the system. In the presence of noise the growth of the phase variance is
also linear but the Beff value increases.The ACF of the spiral chaos decays in time
according to the exponential law exp(−Beffτ). The spectral linewidth of oscillations
at the basic frequency ω0 is defined by the effective phase diffusion coefficient from
expression (16).

7. Conclusion. In our studies, we have shown that there is a group of nonhyper-
bolic attractors of the spiral type for which noise strongly influences the character-
istics of the relaxation to a stationary distribution as well as the correlation time
and barely changes the positive Lyapunov exponent.

The rate of mixing on nonhyperbolic attractors in R3 is determined not only by
the positive Lyapunov exponent but also by the instantaneous phase dynamics of
chaotic oscillations. In the regime of spiral chaos noise causing phase changes can
essentially accelerate the relaxation to a stationary distribution.

For chaotic attractors with a nonregular behavior of the instantaneous phase, the
rate of mixing cannot be considerably affected by noise. This statement is true for
nonhyperbolic attractors of the funnel type and for the attractors of the switching
type; for example, for the quasi-hyperbolic Lorenz attractor.

We have shown numerically and experimentally that the spiral chaos retains to a
great extent the spectral and correlation properties of quasi-harmonic oscillations.
With this, the rate of correlation splitting in a differential system depends on short
times on the instantaneous amplitude and the instantaneous phase diffusion. The
width of the basic peak in the power spectrum of the spiral chaos is correspondingly
defined by Beff and oscillations of the instantaneous amplitude determine the level
of the spectrum background. The effective phase diffusion coefficient in a noise-free
system is defined by its chaotic dynamics but is not directly related to the positive
Lyapunov exponent. Our studies of the statistical properties of the Lorenz attractor
have demonstrated that the properties of the ACF are mainly defined by a random
switching process and slightly depend on the rotation about the saddle-foci. The
classical model of telegraph signal enables one to describe the behavior of ψ(τ)
for the Lorenz attractor by using expression (14). In particular, this expression
closely approximates a linear decay of the ACF from 1.0 to 0.2 that allows us to
estimate theoretically the correlation time. The power spectrum of the Lorenz
attractor in a flow and in the Poincaré map was studied in [36] by applying the
symbolic dynamics methods. We have already established in this study that the
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power spectrum is not a Lorenzian. Our results, obtained by using the model of
telegraph signal are consistent with the findings presented in [36].
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