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In the present paper we show that inhomogeneity of a continuous self-sustained oscillating
medium can be a reason for the onset of chaotic behavior. It has been established that temporal
chaotic dynamics typically arises in the medium with a linear mismatch of the natural frequency
along a spatial coordinate, whereas a chaotic regime is not characteristic for the medium with
randomly distributed frequencies. The interconnection has been revealed between the temporal
chaotic behavior and the spatial formation of imperfect clusters. The spectral and correlation
analysis as well as the linear analysis of stability of regular and chaotic regimes in the inhomoge-
neous medium are performed. The correlation of the instantaneous phase dynamics of oscillations
with the behavior of autocorrelation functions has been examined. It has been established that
the characteristics of temporal chaos correspond to a spiral attractor (Shilnikov’s attractor).

Keywords : Inhomogeneous medium; partial synchronization; mean frequency; clusters; temporal
chaotic dynamics.

1. Introduction

Over a long period of time, distributed systems and
media have been the subject of constant interest
of investigators in the field of nonlinear dynamics.
The problem of deterministic chaos appeared and
developed in a close connection with the theory of
turbulence in continuous media [Ruelle & Takens,
1971; Swinney et al., 1977; Golub & Benson, 1980].
Chaotic dynamics is typical of a wide class of nonlin-
ear distributed systems and media and was widely
covered in the scientific literature. For example, it is
well known that temporal chaotic turbulent regimes
can be observed in the Ginzburg–Landau classi-
cal model of a self-sustained oscillatory medium
[Sakaguchi, 1990; Shraiman et al., 1992; Chaté,
1994]. A large number of freedom degrees and the
variety of nonlinear effects realized in distributed
systems enable one to expect the appearance of new
scenarios of chaos development as well as new types

of chaotic attractors as compared with lumped
systems. Nevertheless, as numerous numeric and
experimental studies have shown, the dimension of
chaotic attractors of distributed systems appears
to be, as a rule, not large, and essential differ-
ences are not revealed between temporal chaotic
oscillations of low-dimensional systems and of sys-
tems with high (or infinite) dimension [Brandstater
et al., 1983; Malreison et al., 1983; Anishchenko
et al., 1986]. Thus, chaotic regimes in distributed
systems and media can be classified by using the
notions of chaotic attractors in low-dimensional sys-
tems [Shilnikov & Afraimovich, 1983; Shilnikov,
1997; Anishchenko, 1995] and by selecting attrac-
tors of a saddle-focus type (Shilnikov’s attractors),
that appear via a quasiperiodic regime destruc-
tion (torus-attractors), switching-type attractors
and others.

A topical problem relating to distributed
systems and media is the influence of spatial

3661



December 9, 2005 18:36 01431

3662 V. S. Anishchenko et al.

inhomogeneity, i.e. the dependence of system
parameters on spatial coordinates, on a dynamical
regime of a system. This subject is especially impor-
tant since the inhomogeneity is inevitably present
in any real distributed system and may essentially
affect its behavior. In the case of self-sustained oscil-
latory systems and media the inhomogeneity may
lead to a natural frequency mismatch of different
elements of the system. When varying the parame-
ter that controls the interaction between elements,
partial or global synchronization can be observed
[Sakaguchi et al., 1978; Winfree, 1980; Kuramoto,
1984; Yamaguchi & Shimizu, 1984; Strogatz &
Mirollo, 1988; Afraimovich et al., 1995]. Partial
synchronization regimes corresponding to frequency
cluster formation have been revealed and examined
in a number of papers where chains of self-sustained
oscillators with a linear and random frequency
gradient were considered [Ermentrout & Kopell,
1984; Osipov et al., 1997; Osipov & Sushchik,
1998]. Such models can be used to describe
phenomena which are observed in living tissues
and distributed chemical reactions [Winfree, 1980;
Diamant et al., 1970; Sarna et al., 1972; Linkens
& Satardina, 1977] as well as in hydrodynamics
[Noak et al., 1991]. Similar cluster regimes can also
be registered in numeric simulation of a continu-
ous self-sustained oscillatory system described by
the Ginzburg–Landau equation with a real diffusion
coefficient and a linear gradient of natural frequen-
cies [Ermentrout & Troy, 1986]. Nevertheless, the
major results concerning frequency clusters have
been obtained only for systems with a discrete spa-
tial coordinate (of chains). In the paper [Osipov &
Sushchik, 1998] it was noted that in some cases a
nonregular temporal dynamics can be found in a
chain with a linear gradient of frequencies. How-
ever, the characteristics of the nonregular regime
have not been studied. The appearance of nonreg-
ular temporal oscillations in a distributed medium,
that is caused by the presence of spatial inhomo-
geneity, is a principally important effect deserving
to be examined in more detail. In the present paper
we study a continuous self-sustained oscillatory
medium with two types of natural frequency mis-
match, namely, with a linear gradient and a random
one. The main objective of our work is to explore
appearance conditions and fundamental proper-
ties and characteristics of nonregular self-sustained
oscillations. In particular, a special attention is paid
to the spectral and correlation analysis of oscilla-
tions and to the peculiarities of phase dynamics.

2. The Model of Medium
under Study

We consider a one-dimensional self-sustained oscil-
lating medium that is governed by the Ginzburg–
Landau equation with real parameters and with
the oscillation frequency depending on a spatial
coordinate:

at = iν(x)a +
1
2
(1 − |a|2)a + gaxx, (1)

where i =
√−1, a(x, t) is the complex amplitude of

oscillations; independent variables t and x ∈ [0, l]
are the time and the dimensionless spatial coordi-
nate, respectively. at is the first time derivative, and
axx is the second derivative with respect to the spa-
tial coordinate. In numeric simulation the medium
length is fixed as l = 50. The diffusion coefficient
g is assumed to be the same in all points of the
medium. For g → 0, oscillations in various points of
the medium possess different frequencies which are
defined by a function ν(x). We study two types of
the spatial mismatch ν(x), namely, linear and ran-
dom ones. The linear mismatch is defined as follows:

ν(x) = x
∆
l

, (2)

where ∆ is the maximal mismatch, i.e. the mis-
match between boundary points of the medium.
The model of the medium Eq. (1) with the lin-
ear mismatch can be treated as a limiting case
of an inhomogeneous chain of quasi-harmonic self-
sustained oscillators [Osipov & Sushchik, 1998;
Vadivasova et al., 2001] when passing to a con-
tinuous spatial coordinate. A similar model of
the medium has been examined in [Ermentrout
& Troy, 1986]. In the case of random mismatch
the function ν(x) is defined as follows. First, we
find a realization of a random function y(x) that
is given by the following stochastic differential
equation (SDE):

dy

dx
= −αy +

√
2Dξ(x). (3)

x is the independent variable, and ξ(x) is the
normalized Gaussian white noise source, D is the
noise intensity, and α is the parameter controlling
the spatial correlation and the variance of random
quantities y(x). The initial condition y(0), step hx

and the initializing variable of a random number
source are chosen to be the same in all numeric
calculations. The autocorrelation function (ACF) of
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the random function y(x) reads

ψy(s) =
D

α
exp(−α|s|), s = x2 − x1. (4)

Then, using the obtained function y(x) we can
write down the dependence ν(x) ∈ [0,∆] as follows:

ν(x) = ∆
y(x) − ymin

ymax − ymin
, (5)

where ymin and ymax are minimal and maximal val-
ues of the random variable y for the given realiza-
tion of the random function on the interval [0, l];
∆ is the maximal frequency mismatch between the
medium elements for g = 0.

The boundary conditions for Eq. (1) are set in
the form ax(x, t)|x=0,l ≡ 0. The initial condition of
the medium is chosen randomly near some homoge-
neous distribution a0 = const. Equation (1) is inte-
grated numerically by means of the finite difference
method according to an implicit scheme with for-
ward and backward sweeps. We calculate the real
and imaginary components of the complex ampli-
tude a(x, t)

a1(x, t) = Re a(x, t), a2(x, t) = Im a(x, t), (6)

and the real amplitude A(x, t) and the phase φ(x, t)
of oscillations

A(x, t) = |a(x, t)| =
q

a2
1 + a2

2

φ(x, t) = arg a(x, t)

= arctg
a2

a1
± πk, k = 0, 1, 2, . . . .

Since the phase changes continuously with time, we
add the term ±πk to the expression for the phase.
The average frequency of oscillations in a medium
point with coordinate x is estimated by the formula:

Ω(x) = 〈φt(x, t)〉 = lim
T→∞

φ(x, t0 + T ) − φ(x, t0)
T

.

(7)

The angle brackets mean time averaging.

3. Cluster Synchronization and
Chaos in the Medium with
Linear Inhomogeneity

Without mismatch, ∆ = 0, the medium Eq. (1)
can demonstrate a homogeneous stationary regime
only, i.e. a(x, t) ≡ a0. When the frequency mis-
match is introduced, the average oscillation fre-
quency Ω changes along the spatial coordinate x.
In the case of linear mismatch [Eq. (2)] and for the

given parameter ∆ the formation of frequency syn-
chronization clusters can be observed in a certain
region of diffusion coefficient values. Depending on
chosen parameters, one can get perfect and imper-
fect clusters. In the regime of perfect clusters, the
medium is divided into M clusters (regions), each
demonstrating strongly identical average oscillation
frequency Ωi, where i = 1, 2, . . . ,M is the clus-
ter number. In the regime of imperfect clusters the
average frequency continuously depends on the spa-
tial coordinate. In this case the clusters are identi-
fied as space regions (areas) for which the average
oscillation frequencies are close to each other (slant-
ing parts of the Ω(x) dependence). Besides, the
medium also includes intercluster regions that cor-
respond to fast changes of the average frequency in
space. Similar clusters have been observed earlier in
a chain of dissipatively coupled self-sustained oscil-
lators [Osipov & Sushchik, 1998]. However, in this
case the average frequency in the regime of imper-
fect clusters cannot change continuously along the
chain since the spatial coordinate is discrete.

Our studies of the medium Eq. (1) have shown
that the character of temporal behavior of the sys-
tem depends on the form of frequency clusters. For
the perfect cluster regime, the oscillations are reg-
ular (periodic or quasi-periodic ones). In the case
of imperfect clusters the medium demonstrates a
nonregular temporal behavior resembling chaotic
dynamics. Figure 1 exemplifies perfect and imper-
fect frequency clusters in the medium Eq. (1) with
the linear frequency gradient. The same figure also
shows the corresponding diagrams reflecting the
spatio-temporal dynamics of the real amplitude
A(x, t). There is no point in speaking about spa-
tial order or disorder in the system being studied as
the system length includes only two or three spatial
oscillations for the chosen values of the parameters
g and Ω. We cannot respectively judge about tur-
bulence since the latter notion implies a nonregular
behavior of the medium both in time and in space.
However, as the system length l increases or the
parameter g decreases, the medium with imperfect
clusters can also exhibit a spatial disorder.

Cluster structures characterize a spatial distri-
bution of the average oscillation frequency of the
medium Eq. (1). The relation between this quantity
and characteristic frequencies being present in the
power spectrum of oscillations is not entirely obvi-
ous. From a viewpoint of the power spectrum, the
real existence of frequency clusters can be demon-
strated by constructing spatio-spectral diagrams
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Fig. 1. Medium behavior in the regime of cluster synchronization. (a) Perfect cluster (upper row) and the corresponding
spatio-temporal diagram for g = 1.0; (b) imperfect clusters and the spatio-temporal diagram for g = 0.85. The grey color
gradient in the spatio-temporal diagrams (low row) reflects real amplitude values A(x, t). The white color corresponds to the
maximal value of the amplitude and the black one to the minimal value. The horizontal axis is x coordinate values and the
vertical one is time. The calculations are performed with discretization steps ht = 0.01 and hx = 0.001.

that are shown in Fig. 2 and reflect the distribu-
tion of power over frequencies as a function of the
spatial coordinate. A definite structure can be well
distinguished in the diagrams. The distribution of
the spectral maximum repeats the distribution of
the average frequency Ω(x). In the regime of perfect
clusters, the average frequency completely matches
the frequency of the spectral maximum [Fig. 2(a)].

The boundary between clusters coincides with the
redistribution of powers between neighboring spec-
tral lines. In the regime of imperfect clusters, agree-
ment between the frequencies is approximate and is
essentially violated in intercluster regions. Besides,
as can be seen from Fig. 2(b), the oscillations in
the imperfect cluster regime are characterized by a
more complicated power spectrum distribution that
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(a) (b)

Fig. 2. Spatio-frequency diagrams of a1(x, t) oscillations for (a) g = 1.0 (regime of perfect clusters of the average frequency)
and (b) g = 0.85 (regime of imperfect clusters). The grey color gradient denotes different values of the power spectrum density
S(x, ω) in a linear scale. The white color corresponds to zero value of S(x, ω) and the black one to its maximal value. The
horizontal axis is x coordinate values and the vertical one is the frequency.

is related with their nonregular character. Harmon-
ics and combination frequencies are especially well
pronounced in intercluster regions.

Consider in detail the basic characteristics of
medium oscillations in some spatial points for the
case of perfect and imperfect cluster formation. For
fixed points x = x1 we construct phase projections
of oscillations on the plane (a1, a2), spectral power
densities and temporal autocorrelation functions.
The ACF and power spectra are calculated using
independent methods. Under the assumption that
oscillations are ergodic and stationary, the ACF of
the process a1(x, t) is computed directly from its
definition:

ψa1(x, τ) = 〈a1(x, t)a1(x, t + τ)〉 − 〈a1(x, t)〉2, (8)

where the angle brackets mean time averaging.
Then the ACF is normalized on its maximal value,
i.e. Ψa1(x, τ) = ψa1(x, τ)/ψa1(x, 0).

Characteristics of oscillations in the regime of
three perfect clusters are shown in Fig. 3 for g = 1.0
and in the spatial point x1 = 25 (the second clus-
ter center). The phase portrait projection pictured
in Fig. 3(a) indicates a quasi-periodic character of
oscillations. Figure 3(b) illustrates the normalized
power spectrum of oscillations a1(x1, t). The fre-
quency of the basic spectral maximum, that cor-
responds to the largest power density, coincides

with the average frequency in the considered spa-
tial point, i.e. with the frequency of the second
cluster Ω2 = 0.1 ± 10−4. Besides, the spectrum
exhibits peaks at the frequency of the first clus-
ter Ω1 = 0.0472 ± 10−4 that is incommensurable
with Ω2, at the frequency of the third cluster Ω3 =
0.1527±10−4 = 2Ω2 −Ω1, and at some combination
frequencies. The real amplitude A(x1, t) represents
an envelope of the oscillations a1(x1, t). Respec-
tively, the power spectrum of A(x1, t) that is shown
in Fig. 3(c) demonstrates peaks at the difference
frequency Ω2 − Ω1 and its harmonics. The ACF of
the process a1(x1, t) is presented in Fig. 3(d) and
corresponds to a quasi-periodic regime.

Figure 4 illustrates oscillations at the point cor-
responding to the second cluster center (x1 = 25)
but now in the regime of imperfect clusters for
g = 0.85. The projection of oscillations on the plane
(a1, a2) is shown in Fig. 4(a) and indicates a more
complicated temporal behavior of the medium. The
power spectrum of the process a1(x1, t) is contin-
uous [Fig. 4(b)], although several peaks at char-
acteristic frequencies can be distinguished. The
frequency of the basic spectral maximum ωmax =
0.1 ± 10−4 coincides, within the calculation accu-
racy, with the average frequency Ω(x1). As before,
we can denote it as the frequency of the second
cluster Ω2, although, strictly speaking, the average
frequency is not strongly the same at all points of
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Fig. 3. Characteristics of oscillations at the point x1 = 25 (the cluster center) in the regime of perfect clusters for g = 1.0.
(a) Phase portrait projection on the plane (a1, a2); (b) normalized power spectrum density of a1(x1, t) oscillations; (c) nor-
malized power spectrum density of A(x1, t) oscillations; and (d) normalized ACF of a1(x1, t).
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Fig. 4. Characteristics of oscillations at the point x1 = 25 (the cluster center) in the regime of imperfect clusters for g = 0.85.
(a) Phase portrait projection on the plane (a1, a2); (b) normalized power spectrum density of a1(x1, t) oscillations; (c) nor-
malized power spectrum density of A(x1, t) oscillations; and (d) normalized ACF of a1(x1, t).
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Fig. 4. (Continued )

the imperfect cluster. The spectrum also exhibits
peaks at frequencies Ω1 = 0.0451 ± 10−4 and
Ω3 = 0.1548 ± 10−4 that correspond to average
frequency values in the center of the first and third

clusters. The continuous spectrum of the process
A(x1, t) is presented in Fig. 4(c) where Ã(x, t) is a
centered process, i.e. Ã(x, t) = A(x, t) − 〈A(x, t)〉
and 〈· · ·〉 denote the mean value. Here, one can see
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Fig. 5. Characteristics of oscillations at the point x2 = 32 (the cluster center) in the regime of imperfect clusters for g = 0.85.
(a) Phase portrait projection on the plane (a1, a2); (b) normalized power spectrum density of a1(x2, t) oscillations, and
(c) normalized ACF of a1(x2, t).
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Fig. 6. Projections of oscillations on the plane (Ã(x1, t),
Ãh(x1, t)) (a) in the regime of perfect clusters for g = 1.0
and at the point x1 = 25, (b) in the regime of imperfect clus-
ters for g = 0.85 and at the point x1 = 25 (the cluster center),
and (c) in the regime of imperfect clusters for g = 0.85 and
at the point x1 = 32 (intercluster region).

peaks at the difference frequency Ω2 − Ω1 and
its harmonics. The decay of the ACF for a1(x1, t)
[Fig. 4(d)] indicates the presence of mixing that in
a deterministic system can be connected only with
chaotic dynamics. It is worth noting that the ACF
envelope decays almost exponentially.

In the same regime at g = 0.85, oscillations
at the spatial point x2 = 32 corresponding to the
intercluster region (between the second and third
clusters) are much more complicated. As can be

seen from Fig. 5(a), the trajectory performs numer-
ous disordered loops in the (a1, a2) projection. In
Fig. 5(b) we compare two power spectra of oscil-
lations a1(x, t), calculated at points x2 = 32 and
x1 = 25 [the latter being analogous to Fig. 4(b)].
It is seen that the spectrum is rebuilding along
the spatial coordinate. Since the point x2 is placed
closer to the third cluster than to the second one,
the basic spectral maximum at this point corre-
sponds to the frequency Ω3 (curve 1) rather than
to Ω2, as at the point x1 (curve 2). It is impor-
tant to emphasize that since the point x2 belongs
to the intercluster region, the average frequency
Ω(x2) = 0.1327 ± 10−4 is essentially different from
the frequency of the basic spectral maximum Ω(x3).
The ACF of a1(x2, t) oscillations also decays but not
exponentially now [Fig. 5(c)].

For better understanding of the character of
oscillations it is useful to analyze the behavior of
trajectories not only in the (a1, a2) plane but also
to introduce in some way projections of oscillations
Ã(x1, t) at a fixed point x = x1. Projections on the
plane (Ã, Ãt) appear to be insufficiently illustrative.
Therefore, we consider oscillations on the plane of
variables Ã(x1, t), Ãh(x1, t), where Ãh(x1, t) is the
Hilbert conjugate process with A(x1, t):

Ãh(x, t) =
1
π

∫ ∞

∞
Ã(x, τ)
t − τ

dτ . (9)

Figure 6 exemplifies projections in regimes of per-
fect and imperfect clusters. It can been seen that the
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Fig. 7. Temporal dependence of the perturbation norm
||u(x, t)|| of oscillations in the medium Eq. (1) in the regime
of imperfect frequency clusters for g = 0.85 (curve 1) and
in the regime of perfect clusters for g = 1.0 (curve 2).
Values of ‖u(x, t)‖ are given in a logarithmic scale. The
dashed line denotes the exponential function exp(αt) with
α = λmax = 0.0023 ± 10−4.
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periodic modulation corresponds to perfect clusters
[Fig. 6(a)] whereas in the regime of imperfect clus-
ters the obtained phase projections are very simi-
lar to phase projections of chaotic attractors of a
saddle-focus type [Figs. 6(b) and 6(c)].

4. Linear Analysis of Stability of
Oscillations in Regimes of
Perfect and Imperfect Cluster
Synchronization

Since the considered model of the medium does not
include noise sources, mixing can take place only
due to the appearance of dynamical chaos, i.e. due
to an absolute exponential instability of oscillations
in the medium. To analyze the stability of oscilla-
tions, we integrate together with Eq. (1) a linearized
equation for a small perturbation u(x, t) of the com-
plex amplitude a(x, t):

ut = iν(x)u +
1
2
(1 − 2|a|2)u − 1

2
a2u∗ + guxx, (10)

where u∗ is the complex conjugate quantity with u.
Boundary conditions for the perturbation are set
to be ux(x, t)|x=0;l ≡ 0. At every time moment t
we consider an Euclidean norm of the perturbation
‖u(x, t)‖ that, taking into account the spatial coor-
dinate discretization, can be reduced to a sum of a
finite number of terms:

‖u(x, t)‖

=
(∫ l

0
((Re u(x, t))2 + (Im u(x, t))2)dx

)1/2

≈
(

m∑
k=1

(Re u(xk, t))2 + (Im u(xk, t))2
)1/2

,

(11)

where m is the number of integration steps hx along
the system length. Our calculations have shown
that in the regime of imperfect clusters the ACF
decay is accompanied, on average, by an expo-
nential increase of the perturbation norm in time
(Fig. 7). The index of exponential increase λmax

that is obtained for g = 0.85 has the value λmax ≈
0.0023.

To check whether an oscillatory process in the
medium is exponentially unstable in time, we cal-
culate the maximal Lyapunov exponent λmax on a
time series by using the algorithm proposed in [Wolf
et al., 1985]. The calculations give a positive value
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Fig. 8. (a) Phase variance calculated for the regime of
imperfect clusters (g = 0.85) at the point x1 = 25 and its
linear approximation (dashed line) corresponding to Beff ≈
0.00064 ± 10−5. (b) ACF envelope of a1(x1, t) oscillations
for g = 0.85 and its approximation by exp(−Beff |τ |) (dashed
line), both shown in a linear-logarithmic scale.

of λmax, that is weakly dependent on the numer-
ical scheme parameters. Results corresponding to
different points of the medium appear to be
slightly different but all of them preserve the
same order of 10−3. For example, for optimal
parameters of the numerical scheme the recon-
struction method gives λmax = 0.002 ± 0.0002
for the point x1 = 25, that is in good agree-
ment with the Lyapunov exponent value obtained
in the framework of the linear analysis of oscillation
stability.

Hence, we can certainly state that the regime of
imperfect frequency clusters arising in an inhomo-
geneous medium corresponds to a chaotic temporal
behavior.
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5. Mixing Rate and the Effective
Phase Diffusion Coefficient of
Chaotic Oscillations in the
Regime of Imperfect Clusters

Anishchenko et al. [2003] and Anishchenko et al.
[2004a] showed that for a wide class of chaotic self-
sustained oscillating systems with lumped param-
eters, the rate of correlation splitting on large
time intervals and the fundamental spectral line
width are defined by the effective diffusion coeffi-
cient of an instantaneous phase of chaotic oscilla-
tions. With this, positive Lyapunov exponents (the
Kolmogorov entropy) determine the rate of mix-
ing in the transversal section of trajectories on an
attractor. Mixing in the section takes place, as a
rule, significantly faster than mixing along a flow
of trajectories, that is related with the instanta-
neous phase dynamics. As seen from Fig. 4(d), the
form of the ACF of the process a(x1, t), calcu-
lated for the regime of imperfect clusters, enables
one to assume that the ACF envelope Γa1(x1, τ)
decays almost according to an exponential law. It
is important to find out whether the rate of tem-
poral correlation splitting in the inhomogeneous
medium Eq. (1) is connected with the phase dif-
fusion φ(x, t) = arg a(x, t), as in finite-dimensional
self-sustained oscillating systems in the regime of
spiral chaos.

In our studies we consider a long realization of
the process φ(x, t) in the fixed point of the medium
x = x1 and calculate the variance σ2

φ(x, t) =
〈φ2(x, t)〉 − 〈φ(x, t)〉2 on an ensemble of intervals
of this realization (here the angular brackets mean
ensemble averaging). The temporal dependence of
the instantaneous phase variance obtained for the
point x1 = 25 is presented in Fig. 8(a) for the
regime of imperfect clusters. On the time interval
t ∈ [0, 10000] the variance grows almost linearly.
The angular coefficient of the variance growth can
be found by means of a least-square method, and
this estimation enables one to define the effective
phase diffusion coefficient φ(x, t):

Beff =
1
2

〈
dσ2

φ(x, t)
dt

〉
. (12)

The angular brackets mean time averaging. The
value of Beff found at the point x1 = 25 coin-
cides very well with the decrement of the ACF

decay of a1(x1, t) oscillations. The behavior of ACF
envelope is compared with the exponential function
exp (−Beff |τ |) in Fig. 8(b). With this, the maximal
Lyapunov exponent in the given regime exceeds the
value of Beff by order 1 and does not correspond to
the rate of ACF decay. Thus, the ACF of chaotic
oscillations of the medium Eq. (1) in the center
of a frequency cluster decays almost exponentially
with the decrement that is defined by the effec-
tive phase diffusion coefficient. Respectively, the
width of the fundamental spectral line in the power
spectrum must be also defined by Beff since the
spectral power density and the ACF are uniquely
connected through the Wiener–Khinchin transfor-
mation. Apparently, spectral and correlation prop-
erties of chaotic oscillations in the cluster center
can be qualitatively described by applying a model
of harmonic noise, as done for the case of spiral
chaos [Anishchenko et al., 2003; Anishchenko et al.,
2004a]. The situation is quite different for the point
x2 = 32 located in the intercluster region. As seen
from Fig. 5(a), the oscillations a1(x2, t) are mostly
nonregular. The temporal behavior of the phase is
essentially nonmonotone.1 The nonmonotone char-
acter of φ(x2, t) manifests itself in the fact that the
average frequency Ω(x2) does not coincide with the
maximal spectral peak frequency. In this case spec-
tral and correlation characteristics of oscillations
are not related directly with the temporal behavior
of the phase [Anishchenko et al., 2004b] and hence,
the model of harmonic noise is not valid. Our cal-
culations performed for the point x2 = 32 provide
Beff = 0.041 ± 10−3. However, this value is not at all
related with the rate of the ACF decay of a1(x2, t)
oscillations.

6. Cluster Synchronization and
Chaos in the Medium with
Random Inhomogeneity

Now we consider the case when the parameter ν(x)
in Eq. (1) is given by the expression Eq. (5) via
the random function y(x) Eq. (3). Numerical cal-
culations carried out for different values of the
parameter α that controls a spatial correlation of
ν(x) values and for different values of the diffu-
sion coefficient g (for the fixed maximal mismatch
∆ = 0.2) have revealed a number of peculiarities
of the medium behavior in the presence of random

1The phase growth at the point x1 = 25 is not strongly monotonic too. However, its monotonicity is violated rarely, and these
violations do not practically affect averaged characteristics.
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frequency mismatch. For the same ∆, the cluster
synchronization in the medium with the random
mismatch occurs in the region of much smaller val-
ues of the diffusion coefficient as compared with
the case of linear mismatch. In other words, in
this case one can much easily observe a global syn-
chronization of the medium at the same frequency.
Similar results were obtained for a chain of self-
sustained oscillators in [Osipov & Sushchik, 1998].
For the random frequency mismatch a distribution
of the average frequency Ω(x) along a spatial coor-
dinate typically corresponds to the perfect clus-
ter formation. Figure 9 exemplifies the distribution
of the parameter ν(x) and the corresponding dis-
tribution of the average frequency for a compara-
tively small value of the diffusion coefficient. The
absence of imperfect cluster structures can be con-
sidered as a criterium of the absence of chaotic
dynamics. Indeed, the regime of chaotic oscilla-
tions has not been registered in the performed
numeric experiments. One can observe just quasi-
periodic oscillations with different sets of indepen-
dent frequencies. Characteristics of oscillations at
the point x1 = 25 are presented in Fig. 10 in
the regime of frequency clusters that are shown in
Fig. 9(b) (for α = 0.1 and g = 0.01). The spec-
trum and the ACF of a1(x1, t) oscillations, shown in
Figs. 10(a) and 10(b) clearly indicate their regular
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Fig. 9. (a) Random distribution of the parameter ν(x)
according to Eqs. (3) and (5) for α = 0.1 and ∆ = 0.2 and
(b) the corresponding distribution of the average frequency
for the diffusion coefficient g = 0.01.
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Fig. 10. Characteristics of oscillations at the point x1 = 25
for a random frequency mismatch along the special coordi-
nate according to Eqs. (3) and (5) for α = 0.1, ∆ = 0.2 and
the diffusion coefficient g = 0.01. (a) Normalized power spec-
trum density of a1(x1, t) oscillations, (b) normalized ACF of
a1(x1, t) oscillations, and (c) projection of oscillations on the
plane (Ã(x1, t), Ãt(x1, t)).

character. The form of the oscillation projection on
the plane (Ã(x1, t), Ãt(x1, t)), pictured in Fig. 10(c)
enables one to conclude about the quasi-periodic
character of the process a(x1, t).
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7. Conclusion

The performed numerical studies enable us to
make a number of important conclusions concerning
dynamics of an inhomogeneous self-sustained oscil-
lating medium. They are as follows:

(i) Chaos and turbulence can be developed in a
continuous self-sustained oscillating medium
due to its inhomogeneity that can lead to a
frequency mismatch at different points of the
medium.

(ii) Chaotic dynamics is observed if the inhomo-
geneity is determined by a linear dependence of
a parameter on the spatial coordinate x. One
may assume that the same condition can be
applied to any function which “slowly changes”
when varying x.

(iii) A randomly defined inhomogeneity can sim-
plify synchronization of medium elements and
excludes the onset of chaotic dynamics.

(iv) Temporal chaotic dynamics of the medium
with linear inhomogeneity is uniquely related
with the existence of a continuous monotone
dependence of the average frequency of oscil-
lations on the spatial coordinate, i.e. with the
regime of imperfect frequency clusters.

(v) From a viewpoint of spectral and correlation
properties, chaotic oscillations within imper-
fect clusters qualitatively correspond to a
model of harmonic noise. The rate of ACF
decay is not defined by an exponential growth
index of a perturbation but is connected with
the instantaneous phase diffusion. Chaotic
oscillations in intercluster regions possess a
more complicated character, are characterized
by a nonexponential decay of the ACF and can-
not be compared with the model of harmonic
noise.
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