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We study the behavior of an instantaneous phase and mean frequency of chaotic self-
sustained oscillations and noise-induced stochastic oscillations. The results obtained
by using various methods of the phase definition are compared to each other. We also
compare two methods for describing synchronization of chaotic self-sustained oscillations,
namely, instantaneous phase locking and locking of characteristic frequencies in power
spectra. It is shown that the technique for diagnostics of the chaos synchronization based
on the instantaneous phase locking is not universal.
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1. Introduction

In recent years, the “phase dynamics” method for studying synchronization effects
in chaotic [1–4] and stochastic [3–9] systems have received wide acceptance. In this
method, the synchronization phenomenon is treated as an effect of instantaneous
phase locking of oscillations introduced into consideration in some way [2–4]. In
many cases, the studies of the instantaneous phase dynamics of aperiodic oscilla-
tions lead to important and interesting results [1–4,7,9]. However, it is necessary to
carefully take into account the fact that the definition of the instantaneous phase
cannot be introduced uniquely [2–4]. The most general definition of the instanta-
neous phase of irregular oscillations is the one used in the theory of stochastic pro-
cesses [1,2,10]. For oscillations x(t) (with zero mean 〈x(t)〉 ≡ 0), Hilbert-conjugate
process xh(t) is introduced as

xh(t) =
1
π

∫ ∞

−∞

x(τ)
t− τ

dτ , (1)
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where the improper integral is understood in terms of its principal value. If integral
(1) exists, we can write

x(t) + ixh(t) = A(t) exp(iΦ(t)) , (2)

where i =
√−1, A(t) is the instantaneous amplitude (envelope), and Φ(t) is the

instantaneous phase of oscillations x(t). For the instantaneous phase we have

Φ(t) = arctg

(
xh(t)
x(t)

)
± πk , k = 0, 1, 2, . . . (3)

The choice of integer k is determined by the continuity condition for function Φ(t).
The instantaneous phase can be introduced as the rotation angle of an image point
around the origin on the plane (x, xh). In this case, it is necessary to ensure that
the process x(t) is stationary and integral (1) exists. For a dynamical chaos regime,
the instantaneous phase Φ(t) can be introduced by considering the rotation angle
of an image point on a plane of two properly selected coordinates, for example, on
the plane of dynamical variables (x, y). In this case, the equilibrium state of the
dynamical system is set to be the origin of the radius-vector, around which the
phase trajectory rotates. Then the instantaneous phase can be defined as follows:

Φ(t) = arctg

(
y(t)
x(t)

)
± πk , k = 0, 1, 2, . . . . (4)

In [11] it is proposed to determine the instantaneous phase by using the plane of
variables (ẋ, ẏ) which define the corresponding components of the phase velocity.
Such a method may appear to be the most correct one as chaotic trajectories on
this plane always rotate strictly around the origin of coordinates. The instantaneous
phase can also be introduced using a sequence of time points tk corresponding to the
moments when the trajectory crosses a given secant plane. In this case, for arbitrary
time moments, a stepwise, piecewise-linear or any other phase approximation is
used [3, 4]. In a piecewise-linear approximation the instantaneous phase can be
determined as follows:

Φ(t) = π
t− tk

tk+1 − tk
± πk , k = 0, 1, 2, . . . , k = 0, 1, 2, . . . (5)

Then, we can introduce the instantaneous frequency of oscillations

ω =
dΦ(t)
dt

(6)

and the mean frequency

ω̄ =
〈dΦ(t)

dt

〉
= lim

t→∞
Φ(t)− Φ(t0)

t− t0
, (7)

where the brackets 〈· · ·〉 denote time averaging.
Since the instantaneous phase introduced in various ways can have different

values, statistical characteristics of the process Φ(t), for instance, mean frequency
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values, may coincide. In this case, the particular method of the phase definition
is of no importance. However, this coincidence cannot always be observed. The
correctness and unambiguity of the phase description is of special importance if the
chaos synchronization phenomenon is studied. Let us discuss in greater detail the
synchronization of dynamical chaos. The generalized definition of phase synchro-
nization proposed in [1, 2], which is applied to chaotic self-sustained oscillations,
requires that the instantaneous phase difference be bounded for any t:

|nΦ1(t)−mΦ2(t)| < C , (8)

where Φ1(t) and Φ2(t) are the instantaneous phases of interacting self-sustained
oscillators (or a self-sustained oscillator and an external force), and n and m are
the integers determining the synchronization order. Condition (8) written in terms
of mean frequencies (7) is represented as follows:

nω̄1 −mω̄2 = 0 , (9)

where ω̄1 and ω̄2 are the mean frequencies of interacting chaotic self-sustained os-
cillators. The condition of the mean frequency locking ω̄1 = ω̄2 should correspond
to the synchronization at the main tone (n = m = 1). However, the mean fre-
quencies introduced in the above way do not always match typical maxima in the
spectrum of aperiodic oscillations. In the latter case, a serious disagreement can be
observed between the phase and frequency (spectral) methods used for description
and diagnostics of the synchronization phenomenon.

2. Formulation of the Problem

The power spectra of chaotic oscillations in dynamical systems can be substan-
tially different. The spectrum corresponding to the spiral chaos mode looks like the
spectrum of noisy periodic oscillations with a well-pronounced peak at the basic
frequency ω0 [12–15]. The spectra of other types of chaos can be close to the one
of white noise and do not contain pronounced maxima at any frequencies. The
value of the mean frequency (7) depends on which instantaneous phase definition
is used. If we remain within the framework of this formalism, then, while study-
ing the synchronization phenomenon of complex self-sustained oscillations, we can
obtain unreasonable results from a physical viewpoint. To avoid this in numerical
and physical experiments, it is necessary to provide a detailed comparison of mean
frequencies introduced in the frame of the phase dynamics approach with basic
frequencies of the power spectrum. It seems impossible to reach this purpose for
chaotic attractors with spectra being close to uniform ones. Therefore, it is worth-
while investigating the problem of interest with examples of spiral attractors whose
spectrum exhibits a well-pronounced spectral line at the basic frequency, which can
be measured experimentally. Thus, our objective is to compare two methods for
studying the chaos synchronization, namely, the “phase dynamics” method and the
spectral one, and to show their peculiarities. Recently, a considerable attention was
paid to the phenomenon of forced and mutual synchronization in systems driven
by noise (stochastic synchronization) [3, 4, 6, 8, 9, 16, 17]. The concept of stochastic
synchronization can be based either on a partial mean switching frequency locking
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or on the effect of instantaneous phase locking for sufficiently long time intervals (ef-
fective synchronization). Obviously, a correct definition of the instantaneous phase
and the mean frequency will play a significant role in this case [16].

The objective of this paper is to establish a relationship between mean and ba-
sic frequencies of chaotic self-sustained oscillations and to clarify which methods of
introducing the instantaneous phase and dynamic modes can bring them to coinci-
dence. We intend to demonstrate when and for what reasons there is a difference
between these frequencies, and how such a disagreement can affect the diagnostics
of synchronization of chaotic self-sustained oscillations. We also consider the degree
of agreement between different methods of introducing the instantaneous phase of
stochastic oscillations in a bistable oscillator driven by an external force.

3. Frequency and Phase Characteristics of Chaotic Attractors in the
Rössler System

We consider the classical example of the Rössler oscillator [18]. For certain param-
eter values, this well-known chaotic self-sustained oscillator can demonstrate both
spiral and funnel chaos. The system equations read

ẋ = −y − z , ẏ = x+ αy , ż = β + z(x− µ) , (10)

where α = β = 0.2, and µ is the control parameter. We examine the behavior of
the instantaneous phase of Eqs. (10), introduced according to definitions (3) and
(4) for different variables. When expression (3) is used, the corresponding process
is centralized. The mean frequency ω̄ is calculated using formula (7). In addition,
we determine the basic frequency ω0 of spectrum of chaotic oscillations. The calcu-
lation results have shown that the values of ω̄ corresponding to different methods
of the instantaneous phase definition and the values of ω0 do not always coincide.
Moreover, such a disagreement was typically observed for the control parameter
range µ > 6.2. On the contrary, at µ ≤ 6.2 all the considered characteristics co-
incide within the limits of the calculation accuracy. The calculated dependencies
ω̄ and ω0 on the parameter µ are shown in Fig. 1. The dependence ω0(µ) was
obtained for the x(t) oscillations. However, as our calculations of the power spectra
have demonstrated, the behavior of ω0 is the same for all the dynamical variables.

As can be seen from Fig. 1, the values of ω̄ obtained for the x and y variables
according to expression (3) (curves 1 and 2, respectively) differ significantly for µ >
6.2 and do not equal to the values of ω0 (curve 4) for the majority of the parameter µ
values. In addition, Fig. 1 represents the calculation results for the mean frequency
in the case when the instantaneous phase is defined as the rotation angle of a radius-
vector in the (ẋ, ẏ) plane. The disagreement between the mean frequencies and the
basic frequency is connected with the type of the chaotic attractor. Both frequencies
typically coincide for the spiral chaos mode. As µ is increased, the spiral chaotic
attractor is evolving and transforming into a funnel-type attractor [2, 3]. After a
periodicity window in 7.9 ≤ µ ≤ 8.1, the funnel chaos mode is observed in the
system. Although at some parameter µ values certain frequency dependencies can
be rather close, on the whole, a significant divergence of the results is typical for
this region. Let us consider in more detail the behavior of the instantaneous phase
at µ = 6.5. The chaotic attractor can still be referred to the spiral type but the
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Fig. 1. Mean frequency ω̄ and basic frequency ω0 of Eqs. (10) as functions of the parameter µ for
α = β = 0.2. Curves 1 and 2 reflect the behavior of mean frequencies of oscillations x(t) and y(t)
when the instantaneous phase is introduced according to (3). Curve 3 corresponds to the mean
frequency of the trajectory rotation around the origin in the (ẋ, ẏ) plane, and curve 4 illustrates
the behavior of the basic frequency of the spectrum of oscillations x(t).

attractor already demonstrates a complicated structure. All the mean frequencies
calculated by various methods are equal with a high precision (up to 10−4) to one
another and correspond to the basic frequency ω0. This equality is violated only
for the mean frequency of the y(t) oscillations.

Now let us look at the power spectra. In the spiral chaos mode, the spectra
of all dynamical variables (including z(t) that is not appropriate for defining the
instantaneous phase) are characterized by a well-pronounced maximum at the same
basic frequency ω0 [Fig. 2(a)]. The basic spectral line in the vicinity of ω0 has the
same shape for all observed variables, which is close to a Lorentzian [19], whereas
a broadband pedestal of the spectrum depends on the choice of the observed one.
The same is true for the funnel chaos. However, in this case, the Lorentzian with a
maximum at ω0 has a significant width [Fig. 2(b)].
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Fig. 2. Power spectra for Eq. (10): (a) for µ = 6.5, and (b) for µ = 13. Curves 1,2, and 3 were
obtained for variables x, y, z, respectively.

Strictly speaking, frequencies of spectral maxima for a system with a continuous
power spectrum are not invariant with respect to the choice of different variables.
The coincidence of the basic frequencies in the case being studied does not follow
from the fact that the spectral line width at the basic frequency is not large. Indeed,
let us consider variables x and ẋ = dx/dt. Their power spectra are connected by
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the relationship Sẋ(ω) = ω2Sx(ω), and in the general case, the frequencies of the
spectral maxima can be different. The spectral component being considered can be
represented as follows [19]

Sx(ω) =
B

B2 + (ω − ω0)2
, (11)

where B is the phase diffusion coefficient of chaotic oscillations. In this case the
frequency of the spectrum Sx(ω) maximum is ω0, whereas the frequency of the
Sẋ(ω) maximum will be slightly different, i.e. ω1 = ω0 + B2/ω0. However, this
difference can be neglected and, consequently, we have ω1 ≈ ω0.

As has been shown in [19], the coefficient B has a value of order 10−4 (in dimen-
sionless units) for the spiral chaos mode, while it is of order 10−2 for the funnel chaos
regime. All these estimations can change the frequency of the spectral maximum
but only within the limits of the calculation accuracy. When the instantaneous
phase is introduced in the plane (ẋ, ẏ), the mean frequency values are most close
to the basic frequency ω0 in a wide range of the parameter µ values (see curve 3
in Fig. 1). However, in this case as well, the correspondence between the mean
frequency and the basic frequency is not complete in the region of funnel chaos.

Thus, the basic frequency of oscillations in the spiral chaos mode appears to be
an invariant characteristic with respect to the selection of the observed variable.
For the successful determination of the instantaneous phase, the mean frequency
ω̄ should coincide with ω0. If this coincidence is absent, the phase behavior does
not reflect peculiarities of chaotic self-sustained oscillations. We will illustrate this
statement by considering the forced harmonic synchronization of the Rössler oscil-
lator.

4. Phase and Spectral Representations of the Chaos Synchronization

Now, we consider whether the spectral criterion of synchronization (multiplicity of
basic spectrum frequencies) coincides with the phase criterion (8). As an example,
we study the forced synchronization of the chaotic Rössler oscillator by a harmonic
signal. The corresponding system of equations can be written as follows

ẋ = −y − z + C sin (ωext) , ẏ = x+ αy , ż = β + z(x− µ) , (12)

where ωex andC are the frequency and amplitude of the external signal, respectively.
We consider the synchronization at the main tone, i.e. for the following frequency
relationship ω0 = ωex = 1. Criterion (8) is equal to mean frequency ω̄ locking. If
the instantaneous phase Φ(t) is introduced correctly, the following equality should
be met:

θ =
ω̄

ωex
=

ω0

ωex
= 1 , (13)

where θ is the rotation number. When different phase definitions lead to the same
value of frequency ω̄ being equal to the basic frequency, there is no difference what
way is used to determine the rotation number. However, if we choose an “unsuc-
cessful” phase definition method, we can fail to register the synchronization effect.
As an example, Fig. 3 illustrates the behavior of the phase difference between oscil-
lations and the external signal, ∆Φ(t) = Φ(t)− ωext, in the synchronization region
of the spiral chaos at µ = 6.5.
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Fig. 3. Phase difference ∆Φ(t) in Eq. (12) in the synchronization region for µ = 6.5, C = 0.05,
and ωex = 1.068. Curves 1 and 2 correspond to instantaneous phases Φ(t) obtained for variables
x and y, respectively.

Curve 1 corresponds to the instantaneous phase Φ(t) calculated for variable x and
indicates the phase locking. Curve 2 is found for variable y. In the autonomous
mode with the chosen value of µ, the mean frequency of oscillations y(t) do not
coincide with the basic frequency and the phase behavior is nonmonotonic. Hence,
curve 2 in Fig. 3 does not reflect the phase locking effect. Figure 4 illustrates
dependencies of the rotation number on frequency ωex obtained for the spiral chaos
mode at µ = 6.5. Rotation number θ is calculated according to the instantaneous
phase definition (3) for variables x (curve 1) and y (curve 3) as well as using the
basic frequency ω0 (curve 2). We can observe a good coincidence of curves 1 and 2
which display the same locking region θ(ωex) = 1. However, when dynamic variable
y is used, the mean frequency and, hence, the rotation number do not reflect the
synchronization phenomenon (curve 3).

It is obvious that the synchronization phenomenon itself is independent of the
coordinate chosen for observation. A characteristic should exist which allows one
to diagnose this phenomenon for any selected variable. This characteristic can be
the basic spectrum frequency ω0. Indeed, as ωex is varied, basic spectral maxima
in spectra of variables x(t) and y(t) (in contrast to ω̄) evolve similarly. For a given
amplitude of the external signal, the basic frequency ω0 is locked at the external
frequency ωex.

Thus, the absence of mean frequency ω̄ locking diagnosed numerically does not
mean the absence of the synchronization yet. It can appear that an unsuccessful
variable was chosen for calculating the instantaneous phase and the corresponding
frequency. At the same time, in the region of the developed funnel chaos the syn-
chronization does not actually exist. This fact can be demonstrated by analyzing
power spectra of Eq. (12) in the funnel chaos mode. When the external frequency
changes, the spectral line corresponding to ωex shifts against the background of a
fixed spectral maximum at the basic frequency. It should be noted that the mutual
synchronization of self-sustained oscillators of the funnel chaos seems to be possible
(at least, in the effective sense) [11, 20].
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Fig. 4. Rotation number as a function of ωex for µ = 6.5 and C = 0.05 for different ways of
defining θ: curve 1 characterizes the ratio of frequencies ω̄ : ωex for variable x; curve 2 the ratio
ω0 : ωex; and curve 3 the ratio ω̄ : ωex for variable y.

5. Instantaneous Phase and Mean Frequency of a Bistable Stochastic
Oscillator

Now let us discuss the problem regarding to the agreement between different meth-
ods of defining the instantaneous phase and mean frequency in the case of stochastic
oscillations. As an example we consider the Kramers oscillator:

ẋ = x− x3 +
√
2Dξ(t) . (14)

It describes the overdamped motion of a Brownian particle in a double-well potential
U(x) = −x2/2 + x4/4. The particle is driven by a random force in the form of
uncorrelated Gaussian process

√
2Dξ(t) with zero mean. The noise causes the

particle to switch between the wells by overcoming a potential barrier ∆U . The
mean switching frequency (the Kramers rate) depends on the barrier height and
constant D denoting the noise intensity. In the case of a sufficiently high potential
barrier and weak noise, the Kramers rate is defined by the following law:

rK = η exp
(
−∆U

D

)
. (15)

The prefactor η is given by the curvature of the potential wells. For model (14)
we have ∆U = 1/4 and η = 1/(

√
2π). We study numerically the random process

x(t) and its approximation by the telegraph signal xT (t), which corresponds to the
switchings between levels ±1 at the moments of falling within the region |x| ≥ 0.5.
The statistics of switchings is still retained when passing to the process xT (t) but the
information on the system intrawell dynamics is lost. The instantaneous phase of
stochastic switchings can be calculated by using three different methods: (i) accord-
ing to definition (3) for the process x(t) immediately; (ii) according to expression
(5), and (iii) from expression (3) for the telegraph signal xT (t) corresponding to the
process x(t). The obtained results have shown that the phase behavior can differ
for various methods of the phase definition. As can be seen from Fig. 5(a), the first
way of defining the instantaneous phase leads to a more rapid growth of the phase
in time compared to methods (ii) and (iii).

We use the calculation results for the instantaneous phase defined by methods
(i)–(iii) to find the corresponding mean frequencies ω1,2,3 from definition (7). The
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Fig. 5. (a) Temporal dependence of the phase of stochastic oscillations in Eq. (14) at D = 0.1 for
different methods of the phase definition: according to formula (3) for the process x(t) immediately
(curve 1), from expression (5) (curve 2), and according to (3) for the telegraph signal xT (t)
(curve 3), and (b) Mean frequencies ω1,2,3 as functions of the noise intensity D (curves 1,2 and 3,
respectively). The dashed line (curve 4) shows the theoretical dependence of the Kramers rate on
D.

mean switching frequency determined immediately as limT→∞ N/T , where N is
the number of switchings in one direction during observation time T , must coincide
with the frequency ω2. Indeed, this coincidence with a sufficiently good precision
can be observed in numerical experiments. The mean frequencies as functions of
the noise intensity D are shown in Fig. 5(b) together with theoretical dependence
ωK = πrK, where the Kramers rate rK is defined by formula (15). The frequency
values are quite close for weak noise and differ essentially when the noise intensity
increases. The difference of mean frequency values, introduced by different ways,
has also been shown in [16] for a harmonic oscillator driven by noise.

If the noise intensity is not large (when formula (15) is valid), a good agreement
can be observed between the theoretical dependence of the frequency on D (curve
4) and the numerical results obtained for frequencies ω2,3 (curves 2 and 3). At the
same time, the first method of phase definition leads to a higher value of the mean
frequency (curve 1). As the noise intensity D increases, all the calculated mean
frequencies begin to differ substantially. When two stochastic oscillators interact,
the synchronization of random switchings can be observed [3, 4, 6, 8]. In this case,
the effect of instantaneous phase locking exists for large time intervals. However,
since these time intervals are finite, we can speak only about the so-called effective
synchronization. The latter effect can be usually registered by analyzing either the
effective phase diffusion coefficient that must have values close to 0, or the mean
frequency ratio that should be about 1. The width of the effective synchronization
region is determined at a given diffusion level or at a certain allowed frequency
difference. However, as follows from the obtained results, the width of the synchro-
nization region may be different for various methods of the phase definition. Thus,
a method of introducing the instantaneous phase can substantially affect results of
the studies of the stochastic synchronization effect.

6. Conclusions

In the present paper we have compared two methods for diagnosing the synchroniza-
tion phenomenon, e.g. the “phase dynamics” method and the spectral one. It has
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been shown that both methods can lead, as a rule, to the same results in the case of
chaotic oscillations with a high degree of phase coherence (spiral chaos). However,
we have established that the method of phase dynamics can depend essentially on
the way of the instantaneous phase definition and on the choice of the observable.
This peculiarity can especially manifest itself when passing to more complicated
oscillatory regimes, i.e. the funnel chaos mode. Thus, using only one method for
studying the effect of chaos synchronization is insufficient and it is desirable to
utilize different methods and then compare obtained results.

Different methods of introducing the instantaneous phase also give significantly
different results in the case of stochastic switchings in bistable oscillators. Thus,
the way of the instantaneous phase definition can influence the estimation of the
width of the effective synchronization region of stochastic oscillators.
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