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Abstract— We research the bifurcations of partially syn-
chronous periodic orbits which lead to the multistability
formation in a system of three coupled logistic maps with
symmetrical diffusive coupling. We demonstrate that the par-
tially synchronous regimes appeare as results of saddle-node
bifurcations. The mechanisms of stability loss of partial syn-
chronization of chaos are discussed.

I. INTRODUCTION

Nonlinear oscillatory systems often demonstrate the phe-

nomenon of multistability, when several attractors coexist

in the phase space at the same parameters values. Such

systems attract a great interest of researchers because of their

promising possibilities for the aim of control of oscillatory

dynamics. The typical example of a system with developed

multistability is a small ensemble of diffusively coupled

period-doubling oscillators. As it was shown in a number

of works [1]-[3], two coupled period-doubling oscillators

demonstrate a great variety of multistable regular and chaotic

regimes. In our previous investigations, we have found that

the mechanism of the multistability formation in such sys-

tems is connected with the phenomenon of loss of complete

chaotic synchronization [4]. The process of the synchronism

breaking at parameters change is appeared to be induced

by the same bifurcations of the principal periodic solutions

that lead to the formation of new stable regimes in the

systems phase space. Is this situation typical for the systems

with higher dimension? How the process of multistability

formation interacts with the synchronization phenomenon in

ensembles of more than two oscillators? In attempt to answer

these questions we consider an ensemble with one more

oscillator: a ring of three coupled period-doubling maps.

It demonstrates phenomena of both complete and partial

chaotic synchronization. The last case denotes that only two

oscillators in the ring are synchronized while the behavior

of the third one remains unsynchronous. Interdependence

between complete and partial synchronization in systems of

three oscillators with differnet types of coupling, bifurcations

that lead to the synchronism breaking, as well as the phenom-

ena of bubbling of the attractors and the riddled basins which

accompany them, have been considered in a number of works

[5]-[9]. In our investigations we concentrate on the role of

this bifurcations in the process of multistability formation.

We describe typical chains of bifurcations which lead to

formation of hierarchy of partially synchronous regimes.
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II. SYSTEM UNDER CONSIDERATION

We consider a system of three coupled identical logistic

maps in the form:

xn+1 = f(xn) +
γ

2

(
f(yn) + f(zn) − 2f(xn)

)

yn+1 = f(yn) +
γ

2

(
f(xn) + f(zn) − 2f(yn)

)
(1)

zn+1 = f(zn) +
γ

2

(
f(xn) + f(yn) − 2f(zn)

)

where f(x) = λ− x2. A single map demonstrates transition

to chaos through a cascade of period-doubling bifurcations

with λ increasing. The coupled maps system has the fol-

lowing types of synchronous behavior: complete synchro-

nization, when trajectory belongs to the symmetric subspace

(x = y = z) and three kinds of partial synchronization, when

trajectory belongs to one of the subspaces (x = y, x �= z),

(x = z, x �= y) or (y = z, x �= y). Because the all kinds

of partial synchronization posses identical properties, further

we will consider only one of them: (x = y, x �= z).

Any synchronous motions can be observed in experiments

only if they are stable to perturbations transversal to the cor-

responding symmetric subspaces. These stability properties

are usually analyzed by transversal Lyapunov exponents Λ
c/p
⊥

(Λc – for the complete synchronization, Λp – for the partial

synchronization), which for the system under study have the

following form:

Λ
c/p
⊥

= lim
N→∞

1

N

N∑
n=1

ln f ′(xn) + ln

(
1 −

3γ

2

)
(2)

where the values of xn belongs to the chaotic trajectory

located inside the corresponding subspaces of symmetry: in

the diagonal x = y = z for the complete synchronization,

or in the two-dimensional plane x = y for the partial

synchronization. Let us considered the eq. (2) separately for

the cases of complete and partial synchronization.

• In the case of the complete synchronization the dy-

namics of xn satisfies the equation of a single map

xn+1 = f(xn) and, hence, the first term in the

(2) represents the tangent Lyapunov exponent: Λc
τ =

limN→∞
1

N

∑N
n=1

ln f ′(xn). If the coupling parameter

is positive and not too large (0 < γ < 2

3
), the value of

transversal Lyapunov exponent is smaller then the tan-

gent one. Consequently, all synchronous regular regimes

are transversally stable, while the synchronous chaotic

regimes are stable only at sufficiently strong coupling.
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Fig. 1. Order of regimes emerging with decrease of coupling (”c” – chaotic
behaviour, ”p” – periodic behaviour). λ = 1.67.

As the synchronous dynamics is one-dimensional, and,

accordingly, the subspace, that is complementary to

the symmetrical one, is two-dimensional, there are two

transversal Lyapunov exponents. They are equal to

each other and both are determined by the equation

(2). Consequently, all bifurcations that take place in

the transversal direction are singular: the bifurcational

condition is satisfied for two characteristic exponents

simultaneously.

• On the contrary, in the case of partial synchronization

dynamics of a system is two-dimensional, it satisfies the

equations:

xn+1 = f(xn) +
γ

2

(
f(zn) − f(xn)

)
(3)

zn+1 = f(zn) + γ

(
f(xn) − f(zn)

)
,

Since the complementary subspace is one-dimensional

there is only one transversal Lyapunov exponent. Bifur-

cations leading to the transversal instability of partially

synchronous regimes are not singular.

III. FROM FULL TO PARTIAL SYNCHRONIZATION

Let us consider the interdependence between complete

and partial synchronization of chaos in the system (1). We

chose the value of the parameter λ = 1.67, that relates to

one-band chaotic attractor in the single map. The analysis

of the equation (2) demonstrates that both partially and

completely synchronous regimes are stable at sufficiently

strong coupling (γ > 0.207). With the decrease of coupling,

when Λc becomes positive (γ = 0.207) the transition from

complete to unsynchronous regime is observed. Next, with

further γ decrease, the transversal Lyapunov exponent for

the regime of partial synchronization Λp becomes negative

and the trajectory moves to one of the planes of partial syn-

chronization. With further decrease of coupling the regime

of partial synchronization loses its stability, and the system

transits to unsynchronous state. The order of the regimes with

the coupling decrease is shown in Fig. 1. From the regime

of strong complete chaotic synchronization to the regime of

strong partial chaotic synchronization the behavior of the

system goes through the following stages: strong regime
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Fig. 2. Influence of a noise on the weak regime of full synchronization.
λ = 1.67, γ = 0.22

of complete chaotic synchronization (γ > 0.255) → weak

regime of complete synchronization of chaos (γ > 0.207) →

unsynchronous chaotic regime (γ > 0.159) → strong regime

of partial synchronization of regular motions (γ > 0.12)

→ strong partial synchronization of chaos (0.108 < γ <

0.12). With further decrease of coupling the oscillations

become unsynchronous. When we speak about ”strong” and

”weak” synchronization we mean that strong synchronization

is robust to small noise or parameters mismatch, while weak

synchronization is unrobust to them: in regimes of weak syn-

chronization an addition of small noise results in ”bubbling

of attractor” phenomenon, when a trajectory occasionally

leave the symmetric subspace. That phenomenon is shown

on the example of a weak full synchronization regime on

Fig. 2. Now, we consider the bifurcational mechanism of

loss of complete synchronization and formation of partially

synchronous regimes in the system. Similarly to the case of

two maps [10], we research the bifurcations of the principal

saddle periodic orbits, i.e. the orbits, on the base of which the

considered one-band synchronous chaotic attractor has been

formed. We begin with the synchronous orbit of period one

1C0 (Fig. 3). At λ = 1.67 and sufficiently strong coupling

γ ≥ 0.29 the orbit 1C0 is saddle: it is unstable in the

tangent to the symmetrical subspace direction and stable

transversally to it. At γ = 0.29 this orbit undergoes a period-

doubling bifurcation, at which two multipliers become equal

to −1 simultaneously. The correspondent eigenvectors are

directed transversally to symmetric subspace. They form the

basis of invariant subspace (x + y + z = 0). As a result of

this bifurcation the orbit 1C0 loses its transversal stability

and becomes a repeller. In its vicinity three saddle orbits

of doubled period 2C1,i (i = 1, 2, 3) appeared, which are

symmetric to each other at cyclic coordinate change (Fig. 3).

These orbits do not belong to any of the subspaces of symme-

try, and remain unstable for any parameters values. The one-

directional unstable manifolds of the orbits 2C1,i direct along

the planes of partial symmetry to the points of synchronous
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Fig. 3. Location of periodic orbits taking part in the destruction of the
complete synchronization of chaos: 1C0 (�), 2C0 (�), 2C1,i (�).
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Fig. 4. Formation of strong partial synchronization regime and its basins
of attraction. γ = 0.05

orbit 2C0 (Fig. 3). The appearance of the repeller in the

symmetrical subspace initiates the weak synchronization,

because it form the region of a local transversal instability.

From that region the phase points leave the symmetrical sub-

space along the transversal unstable manifold of the repeller

1C0 to one of the saddle periodic orbits 2C1,i, and then

return to the vicinity of the symmetrical subspace because of

global attraction to it (the value of the transversal Lyapunov

exponent Λc
⊥

remains negative). With further decrease of

coupling the orbits of longer periods 2nC0, n = 1, 2, 3, ...

undergo similar bifurcations: 2nC0 → 4nC1 . In the result,

in the system with noise the bubbling phenomena becomes

stronger. Finally, for γ = 0.21 the transversal Lyapunov

exponent becomes positive. The blowout bifurcation takes

place, as a result of which the regime of complete syn-

chronization of chaotic motion becomes unstable. There is

no more attraction either to the diagonal x = y = z, nor

to any of the planes of partial synchronization. The system

demonstrates unsynchronous regime.

With further decrease of γ a saddle-node bifurcation takes

place in every subspace of partial symmetry on the contour

which is formed by unstable manifolds of one of the orbits

2C1,i (Fig. 3). As a result a stable partially synchronous

orbits of period two 2Ci
1 appears (Fig. 4). The appeared orbit

originates a family of regular and chaotic regimes of strong

partial synchronization, that is formed through the period-

doubling route. The similar bifurcations take place on the

manifolds of unstable periodic orbits 4nC1,i appeared from

the synchronous orbits of the main family 2nC0. In its turn,

the each stable orbit 4nC1,i originates the own family of

partially synchronous regimes. Thus, the resulted structure of

the parameters space becomes very complex, with overlap-

ping regions of stability of the partially synchronous regimes

related to different families.

IV. MULTISTUBILITY FORMATION

To investigate the coexistence of partially synchronous

regimes it is convenient to use the ”truncated” equations

(3). Since its phase space is two-dimensional, there are two

multipliers which determine the stability of regimes of partial

synchronization inside the plane of partial symmetry. We

consider bifurcations that lead to appearance of partially

synchronous regimes on the plane of the both systems param-

eters λ and γ. We have found three different mechanisms of

formation of regimes of partial synchronization in the system

(3). One of them was discussed above. It follows from the

saddle-node bifurcation on the line l21 (Fig. 5), on which the

partially synchronous orbit of period two (2C1) emerges. On

the line l411 the first multiplier of the orbit 2C1 becomes

equal to −1 and in its vicinity a stable partially synchronous

orbit of doubled period 4C11 emerges. The region of stability

of the orbit 4C11 on the plane of parameters is formed by

line l411, line l8111 on which the period-doubling bifurcation

takes place, and line l40, where the saddle-node bifurcation

takes place. On the line l2s
1 (Fig. 5) the second multiplier

of the saddle partially synchronous orbit 2C1 becomes equal

to −1, and in its vicinity saddle partially synchronous orbit

of period four (4Cs
11) emerges. With further increase of

parameter λ on the line l412 as a result of a saddle-node

bifurcation the stable orbit 4C12 emerges. The orbit 4Cs
11

forms the one of the borders of the basins of attraction of

the orbit 4C12. With further increase of the parameter λ

both partially synchronous orbits 4C11 and 4C12 undergoes

period-doubling bifurcations. On the line l8111 (Fig. 5) the

first multiplier of the orbit 4C11 becomes equal to −1, the

period-doubling bifurcation takes place, and in its vicinity

the partially synchronous orbit 8C111 emerges. On the line

l4s
11 the second multiplier of the orbit 4C11 becomes equal

to -1, and the orbit 8Cs
111 emerges. Further parameters

change leads to the saddle-node bifurcation on the line l8112,

in the result of which an orbit 8C112 emerges. The same

bifurcations take place with the orbit 4C12 on the lines

accordingly l8121, l412s and l8121.

Thus, on the base of the partially synchronous orbit of

period two (2C1) there appeared two orbits of period four,

four orbits of period eight and so on. Similar bifurcations

are observed for the orbits which appeared on the base of

171



0 0,05 0,1 0,15 0,2
γ

1

1,5

2

λ

112
8l

l

l

111

11
4

8

121l 8

l 8
122

1l
2s

l1

l0

2

4

12
4l

l4s
11

l12
4s

Fig. 5. Regions of stability of partially synchronous regimes based on the partially synchronous orbit of period two.
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Fig. 6. The partially synchronous orbits of period 4: 4C1 (�), 4C11 (�),
4C12(�). λ = 1.35, γ = 0.001

the orbits of period four (4C1). This orbit undergoes the

period doubling bifurcation as a result of which the partially

synchronous orbit of period 8 (8C11) appears. The second

orbit of period 8 (8C12) emerges as a result of a saddle-node

bifurcation, its basins of attraction are formed by the saddle

periodic orbit (4C1) and the saddle periodic orbit which

emerged as a result of saddle-node bifurcation with the cycle

(8C12). The same mechanisms are observed for the orbits

of a longer period. On the Fig. 6 the partially synchronous

attractors of period four are shown. The attractor 4C1 on the

Fig. 6 is appeared as a result of the saddle-node bifurcation

on the unstable manifolds of unsynchronous saddle periodic

orbits of period two, the attractor 4C11 emerged as a result of

period-doubling bifurcation of the partially synchronous orbit

of period two (2C1), and the attractor (4C12) on the Fig. 6

appeared as a result of a saddle-node bifurcation, unlike the

orbit 4C1, its basins of attraction are formed by the saddles

inside the plane of symmetry. That attractors coexist for the

same values of parameters, and are separated in the phase

space. The all above-mentioned phenomena take place also

for the orbits of longer periods. As a result all the partially

synchronous stable regimes form a complicated picture of

multistability. On the other hand, from the system (3) we can

observe the dynamics of the original system (1) only inside

the chosen plane of partial synchronization. However, besides

the bifurcations inside this plane the system (1) loses its sta-

bility in transversal direction. When these bifurcations take

place with periodic orbits, in their vicinity the unsynchronous

orbits of the doubled period emerge. Next, the pitchfork

bifurcation takes place and that unsynchronous orbits become

stable. The basins of attraction of these unsynchronous orbits

locate in the vicinity of the partially synchronous chaotic

attractor, and as a result the riddled basins phenomenon is

observed. Besides the riddling of basins of attraction one

can observe the bubbling phenomenon. That two phenomena

follows the stability loss of partial chaotic synchronization,

172



after which the phase point moves away from the subspace

of symmetry.

V. CONCLUSIONS

We have researched the phenomenon of partial synchro-

nization in a system of three coupled logistic maps. The

phenomena of appearance of partially synchronous regimes,

bifurcations inside and outside the synchronization plane

and the phenomenon of partial synchronization loss have

been considered. The strong partial synchronization regime

emerges as a result of the saddle-node bifurcation which

takes place on the unstable manifolds of unsynchronous or-

bits, which emerged as a result of period-doubling bifurcation

outside the symmetric subspace of the synchronous orbits.

The period of partially synchronous orbits emerged that way

depends on the controlling parameters values. Next, through

the cascade of bifurcations the transition to a strong partial

synchronization of chaos is observed. Besides the period-

doubling bifurcations on the transition to chaos saddle-node

bifurcations take place inside the plane of synchronization

and new partially synchronous periodic orbits emerge. As

a result the multistability of different partially synchronous

regimes is observed inside the synchronization plane. Besides

the bifurcations inside the subspace of partial symmetry the

orbits can lose their stability transversally to the plane of

partial symmetry. As a result unsynchronous saddle peri-

odic orbits emerge. That orbits with further variation of

parameters as a result of a pitchfork bifurcation become

stable. That phenomena result in multistability formation

outside the synchronization plane, and induce the bubbling

and the riddled basins phenomena on the loss of stability

of partial synchronization of chaos. As a result of partial

synchronization loss the unsynchronous motions emerge.
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