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In this paperwe describethe transitionto phasesynchronizatiorfor systemsof couplednonlinear
oscillatorsthat individually follow the Feigenbaunroute to chaos.A nestedstructureof phase
synchronizedegionsof differentattractorfamiliesis observedWith this structure the transitionto
nonsynchronoudehavioris determinedby the loss of stability for the most stable synchronous
mode.lt is shownthatthe appearancef hyperchaosndthe transitionfrom lag synchronizatiorio
phasesynchronizationare relatedto the merging of chaotic attractorsfrom different families.
NumericalexamplesisingRosslersystemsandmodelmapsaregiven. © 1999 American Institute

of Physics. [S1054-150(09)00201-3

The interaction between two or more chaotic oscillators
can produce a number of different synchronization phe-
nomena, depending on the degree to which the oscillators
adjust their motion in accordance with one another. A
variety of technical applications of such synchronization
phenomena are presently being considered, e.g., for se-
cure communication and for the surveillance and control
of systems that operate in a chaotic regime. Chaotic syn-
chronization may also play an essential role for the regu-
lation of many biological systems where an individual
functional unit displays complex dynamics. In the present
paper we investigate the bifurcations that can occur
when chaotic synchronization is established between two
period-doubling systems with different basic periodici-
ties. We show how this synchronization gives rise to a
nested structure of phase synchronized regions.

I. INTRODUCTION

Chaoticsynchronizatioris a topic of fundamentainter-
estin manyareasof science(Refs.1-6, andreferencesited
therein. It hasalsobeensuggestedhatchaoticsynchroniza-
tion canbe appliedin connectionfor instance with the de-
velopmentof new methodsfor securecommunicationand
for themonitoringof dynamicalsystem$—6 A basicquestion
in this areaof researchs the following: Given a systemof
interacting, slightly nonidenticalchaotic oscillators with a
certaindistribution of their naturalfrequenciesto what de-
gree will the oscillators adjust their motion in accordance
with one anotherso asto attainsomekind of overall coher-
ence?Severalaspectof this problemhave beerconsidered
in the literature, with full synchronizatiorl, generalized
synchronizatiorf;® and phasesynchronizatiort®!! represent-

3E|ectronicmail: ellen@chaos.fys.dtu.dk

1054-1500/99/9(1)/227/6/$15.00

227

ing differentforms of the samebasicphenomenonHowever,
the transitionsto and betweenthesedifferent typesof syn-
chronizationare not understoodn detail.

It is well-known that transitionsfrom regularto chaotic
oscillationsdemonstrateariousforms of scalinganduniver-
sality properties:? Transitionswithin chaosare associated
with complex phenomenasuch as crisest® symmetry-
breakingbifurcations* attractorbubbling,andlocal (or glo-
bal) riddling phenomend® as well as chaos-chaos and
chaos-hyperchaosntermittency'®~2 Recently, there has
beena growing interestin a bifurcational interpretationof
the phenomenahat take place at the boundaryof chaotic
synchronization.Anishchenkoet al.> have associatedthis
boundarywith anaccumulatiorof curvesof tangentbifurca-
tions of saddlecycles,anda morerecentstudyby Pikovsky
et al.!® suggestghat attractor-repeller collisions take place
at the transitionto chaoticsynchronizationthusdrawingon
the analogy with the tangentbifurcation of a limit cycle.
Most recently?® the transitionto phasesynchronizationvas
described as a boundary crisis mediated by unstable-
unstablepair bifurcationson a branchedmanifold.

Multistability, i.e., the coexistenceof a setof attractors
in the phasespaceof a dynamicalsystem,is anothertypical
phenomenorfor nonlinearsystemsThe developmenbf dif-
ferentfamilies of regularand chaoticattractorsfor coupled
oscillatorshasbeeninvestigatecby severalauthors*=2 As
shown by Astakhovet al.,?! for instance,two dissipatively
coupled,identical oscillatorsfollowing the period-doubling
route to chaoswill exhibit a hierarchy of bifurcationsin
which different families of attractors emerge. For two
coupledRosslersystemsRasmusseet al.?> havefound the
replacemenbf someof the period-doublingbifurcationsby
torus bifurcations leading to quasiperiodicity, frequency-
locking, andthe emergenc®f newnonsymmetridamilies of
attractors.Anishchenkoet al.® have shownthat this multi-
stability is structurallystablewith respecto a mismatchbe-
tweenthe basicfrequencies.

In the presentpaperwe study the structureof the syn-
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chronizationregion for interacting oscillators whose spec-
trum containssubharmonic$/2¢ (k=1,2,...) of the basicfre-

qguency. The paperis organizedas follows. In Sec. Il we

introducetwo coupledRossler systemsand give survey of

the behaviorobservedn this model. Further,in Sec.lll we

reducethe problemto a simple mapping.We startwith for-

mulasthat emulatemultistablebehaviorto guide the search
for suchphenomenan phasesynchronizedchaos.Basedon

the analysisof a one-dimensionaimap modelinginteracting
period-doubling systemsand on results from numerical
simulationsof coupledRosslersystemswith a mismatchbe-

tweenthe basicfrequencieswe investigatethe structureof

the boundaryof the synchronizatiorregion. We summarize
our resultsin Sec.IV.

Il. DYNAMICS OF COUPLED ROSSLER SYSTEMS

As an illustrative example let us considerthe well-
known pair of coupled Rossler systemsas describedby
Rosenblunet al.:*°

X1=—w1Y1— 21+ C(Xp—Xyp),
Y1= 01X+ ayq,
2y=B+2z3(Xy— u),

Xo=— w3y~ Zp+ C(X1—Xy),

D

Yo=wXot+ ays,

2;=B+2z(X— p),
wherethe parametersy, B, and u governthe dynamicsof
eachsubsystemc is the coupling parameter,w;= wg+ A
and w,=wg—A are the basic frequencies(we suppose
wp=1), and A is the mismatchbetweenthe basicfrequen-
cies.

Becausesynchronizationbetweenthe two systemsin-
volves phaseaelationsit is usefulto rewrite (1) in termsof
phasesand amplitudes.InstantamplitudesA; , and phases
®, , areintroducedby the substitutionof variables:

X1,2=A1 008D 5,
Y12=A128INPy 5. @
This allows usto recast(1) into the form
A= aA; 5+ (CAz1c08D, 1~ Ag f a+c)cosd ,
—27)C08D 5,
D4 = w1~ (CAz1/A; ;08P , 1~ (a+C)cosd ,
=21 ,/A; )Sind 5, 3
2y 5= B+23 (A1 2C05P ;— ).

As before, u controls the bifurcations of the individual
Rosslersystemsand A determineghe detuningbetweerthe
two interacting systems.Hence, thesetwo aspectscan be
separatelyconsidered By numerically integrating(3), it is
easyto find 6®(t) =d,(t) — P 4(t) for any oscillating solu-
tion.
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FIG. 1. Bifurcation diagramfor two coupled Rossler systems(a=0.15,
B=0.2,¢c=0.02. The solid curvesare bifurcation lines of “in-phase” at-
tractors.The dasheccurvesshowbifurcationsof “out-of-phase” attractors.

With « and A as active parametersve now performa
detailedbifurcation analysisof the coupledRosslersystems
andfollow the periodic and chaotictrajectoriesof different
attractorfamilies. For eachsuchfamily, a phase-lockinge-
gion appears.

Figure 1 showsa segmenbf the bifurcationdiagramfor
a synchronoussolutionon the (A,u) parameteplane,while
C, «, and B are fixed. Becausethe numberof synchronous
regimesdependsn the period of oscillations,new synchro-
nousregimesappearaboveeachline of period-doublingand
thereexistsan infinite but denumerableetof suchregimes.
Hence,it is difficult to analyzeanddisplayall of themin the
diagram.Let us consideronly attractorsfrom two families:
“in-phase” attractorsvhenthe phasedifferenceof x,(t) and
X5(t) is zeroat A=0, and “out-of-phase” attractorswhen
the phasedifferenceis 27 at A=0. Thesefamilies havethe
largestbasinsof attraction.Denotethe attractorsas2'C, and
2'C,, respectively,wherei=1,2,3,...,and 2' is the cycle
period, normalizedin termsof the periodof cycle Cg.

For bifurcationalcurvesof 2iCo,l cycleswe usethe fol-
lowing denotation:l _; is a curve of period-doublingbifur-
cationof cycles2'Cy;; |1 is a curveof tangentbifurcation
of cycles2'Cy 4; 1%, is acritical curve, correspondingo the
accumulatiorof period-doublingpifurcationsof 2'C, cycles;
andl?, is a critical curveof family 2'C; .

Above the critical curvesthere exists a set of chaotic
attractors2' CA, and 2'CA,;. Band-mergingpifurcationsof
theseattractorstake place.We omit the correspondindpifur-
cation curvesand denotethe regionsof chaosas CA, and
CA;. CAs appearsrom amergingof CAy; andCA; . Inves-
tigationshaveshownthatcycles2'C, arestablelongerwhen
detuningis applied.Outsidethe synchronizatiommegion,qua-
siperiodic oscillations4T? and nonsynchronoughaosCA,
arefound.
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FIG. 2. One-parametdsifurcationdiagramfor two coupledRasslersystems
(@=0.15,8=0.2,¢=0.02, u=6.7).

The coexistenceof a set of attractorscharacterizedy
different phaseshiftsis a universalphenomenorior coupled
systemswith period-doublingsand their main featuresare
oftenindependenbf particularpropertiesof a model.

The numberof coexistingattractorsinside a synchroni-
zationregionfor weak couplingtendsto infinity closeto the
thresholdof chaos.When the detuningparameterA is in-
creasedthe synchronouschaotic regimessequentiallylose
their stability (direction A in Fig. 1). We can constructa
bifurcationdiagram(Fig. 2) for the differentfamilies of cha-
otic attractorsCA, andCA; . It is easyto seethatthe num-
ber of possiblesynchronouschaotic solutionsdecreasest
A=0.0097.Moreover,the chaoticattractorCA; is stablein
a wider range of detuning parametersand its bifurcation
curveforms the boundaryof the synchronizatiorregion.

Along the direction B (Fig. 1) the numberof possible
synchronoussolutionsalso decreasedhut in a ratherdiffer-
entway. As u is increasedwithin the chaoticregion, a se-
guenceof crisesof chaoticattractorsakesplace.Eachcrisis
reduceghe numberof possiblesynchronousegimesby two.
Finally, a singlechaoticattractoris formedby the mergingof
chaotic trajectoriesof all families. The last phenomenon
leadsto new propertiesof the chaotic solution and can be
diagnosedn differentways.

Let us considerthe distribution of phasedifferencesp
for chaotic attractorsof the various families. Figure 3(a)
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showsthe correspondinglots for the coexistingchaoticat-
tractorsCA, andCA; (curvesl and2, respectively andfor
the attractorthat arisesas a result of the merging of these
attractors(curve 3). It is easyto seethat the phasestructure
of theresultingchaosis ratherdifferentfrom the structureof
the chaoticregimesbeforemerging.The observedsaussian-
like phasedistribution can not be found for chaoswhich
appearsia the period-doublingscenario.

Furtherinvestigationshowsthat the mergingof chaotic
attractorsleadsto hyperchaosEachattractor(CA, or CA;)
is characterizedby only one positive Lyapunov exponent.
But when the transitionto mergedchaosoccurs,a second
directionof exponentialnstability and,hencea secondposi-
tive Lyapunovexponentappear.Figure 3(b) showsthe two
largestLyapunovexponentdor the attractorsof two differ-
entfamiliesasafunctionof the parametej.. Thedarkpoints
correspondsto CA,, and the open circles to CA;. For
A=0.0093at u=6.97,acrisisof CA; andCA, takesplace
thatleadsto the appearancef a new chaoticattractorCAs .
TheattractorCAs containsthe trajectoriesof CAg andCA;
and is characterizedoy two positive Lyapunov exponents.
Hence,the emergencef hyperchaoss observed.

Increasingof the coupling coefficient leadsto the de-
structionof multistability becausehe “out-of-phase” solu-
tionsdie out?>?2Thus,whencouplingis strongerthereexist
only attractorscorrespondingo the zero difference of the
phasefor the partial oscillations(i.e., 2'Cq, 2'CA,). Follow-
ing the variation of the Lyapunovexponentsvhenthe cou-
pling is increasedijt is easyto find the transitionfrom hy-
perchaos to chaos CA, with one positive Lyapunov
exponent.In Ref. 11 this phenomenavas called “lag syn-
chronization.”

lll. MAPPING APPROACH TO MULTISTABILITY

To constructa model of the emergenceof chaoticsyn-
chronizationlet us startby consideringhe following expres-
sion:

X(H)=A($(1))sin(wt). 4

Here, ¢= ot
=11{L,

(1— o sifwt/2 +i(7/2)]) representsnomentaryamplitude,
w is the naturalfrequencyof oscillation,N definesthe period
of the considereasignal T=2N(27/w), ando; specifiesthe
amplitudeof eachof the subharmonicomponentsTheterm

is a phase of oscillations, and A(¢)
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FIG. 3. Two coupledRosslersystems
(e=0.15, B=0.2, c=0.02, A
=0.0093: (a) The distributionof mo-
mentaryphasedifferencesfor the syn-
chronouschaotic attractorsCA, and
CA; (curve 1 and 2, respectively at
n=6.6 and for merged chaos CAs
(curve 3) at u=7.2; (b) the largest

0.02[

Lyapunovexponentsys the parameter
w for the synchronousegimesof two
families (dark points correspondto
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CA, andopencirclesto CA;).
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FIG. 4. (a) Time seriesx(t) for the periodic orbits with period4T, simulatedfrom the expressior(4). (b) The modelmap (10) for the caseof N=2.

i (7/2) is introducedto obtaina more obviousphaseportrait
of eachperiod-doublingn our model(in general,any phase
shift may be used. The temporalvariation describedby (4)
is illustratedin Fig. 4(a). As N increasesx(t) providesa
gualitative representationof a sequenceof high-periodic
cyclesleadingin thelimit to the birth of chaosvia a cascade
of period-doublings.

For two synchronizedoscillators,eachdescribedby an
expressioriike (4), the phasedifferencecanattain2 differ-
ent values, i.e., O=¢;— p,=27m, m=0,1,2,...2—1.
Hence,the coexistencef a large numberof periodicattrac-
torswill occur.Whenapproachinghe boundaryof the syn-
chronizationregion, theseattractorsdisappearone by one,
exceptfor a single family whosebifurcationsdeterminethe
transitionto the nonsynchronousegime.In orderto under-
standthe structureof this boundaryin more detail we shall
investigatea sequencef modelmaps.

For quasiperiodimscillators,the phasedifferencedevel-
opsaccordingto the following well-known equatior?*

O=A—yf(A;,A,)SiNO. (5)

Here,f(-) is afunction of the amplitudesA; and A, which
is definedby the type of interaction,A representghe mis-
match betweenthe basicfrequenciesand v is the coupling
strength.

In our casethe oscillators have different momentary
phases¢, and ¢, while their amplitudesdependon the
phasesn the following way:

N
a
A=A(¢)=]] | 1- 0 sin f,l+i =
=1 2 2
y oo (6)
. 1 T
A2=A(¢1—)=i=H1 (1—0i sm(?— >+ 5))
It is not possibleto obtain an explicit relation for the
phasedifferenceof two chaoticoscillators.However,quali-

tatively we can consider the oscillators as high-periodic
cycles of periodsT=2N27/w where w is the natural fre-

guencyof partialsystem(w, , for examplé. To useadiscrete
model, Eq. (5) should be integratedover the characteristic
time T of the system.Thenwe get

oV, . =0N+Q—kFN(®N)ymod2N27. 7

Here, ®N, ,=0N(t,+nT) and ONe[0,2Y27], Q=TA,
andK is a parametemwhich is relatedto the strengthof in-
teraction. It seemsto be difficult to determinefunction FN
analytically.We supposehat the intensity of interactionde-
pendson the phasedifferencesin the sameway asthe am-
plitude of subsystenvs its phase As a simple approachwe
shall assumean expressiorof the form

N

n . T
_._+ —
2 '

N
FN(E):sin(@w)Hl (1—5i sin ) 8
=

Equationg7) and(8) may be viewedasa generalization
of the well-known circle mapfor simple oscillators2® Vary-
ing N=1,2,3,...,we obtain a family of maps,eachbeing a
modelof synchronizatiorfor 2N-periodiccycles.The caseof
N=2 isillustratedin Fig. 4(b). The aboveequationsare not
normalizedon the samescalebecauseghey are takento the
modulus2N2 7 which is changedwith eachperioddoubling.
This allows us to preservethe valuesof () and K and to
comparethe resultsfor different N. A similar approachto
constructa modelmapin the nonautonomousasewas sug-
gestedby Pikovskyet al.®

With thesepreliminariedet us now investigatethe struc-
ture of the boundaryof the synchronizatiornregion for the
main resonancé:1 (or 1:1 for continuous-timesystems. In
termsof the map,the transitionat thatboundarycorresponds
to atangentbifurcation. The conditionfor sucha bifurcation
to occuris

0} +0-KFNe})=0],

9
d(ON+Q—KFN(ON))|

deN

=1,
|@N=®N
*



Chaos, Vol. 9, No. 1, 1999

1.0

//;

\\\

0.0 L ) L

FIG. 5. Phase-lockingegionsfor differentfamilies of attractorsfor (a) the
model map (10) with §=0.45. The solid lines correspondto N=1 (two
cyclesof period-twocoexis}. The dashedines correspondo N=2 (four
cyclesof period-fourcoexisy.

where@i‘ is the fixed point. Equation(9) immediatelygives
KFN©})=0,
dFNON)
deN

(10
=0.

oN=@N
*

Hence,it is easyto seethatfor anyvalueof @,’f , theset
of points correspondingo the tangentbifurcation forms a
straight linein the (Q2,K) parameteiplane. The numberof
rootsof Eq. (10) definesthe numberof possiblesynchronous
regimes.For the caseof small N, Eqg. (10) can be solved
analytically.For largerN, this canbe donenumerically.Fig-
ure 5 showsthe resultsfor N=1 (fully drawn lines) and
N=2 (dotted lines). Eachline correspondgo the tangent
bifurcation for one of the fixed points of the map. Under
variation of ), a pair of stable and unstablefixed points
arisesat eachline. For larger K, the stablefixed point can
subsequentljose its stability througha period-doublingbi-
furcation. To find the correspondingparametervaluesone
only hasto replacethe zeroon theright side of Eq. (10) by
2/K. However,in the presentwork we shall not considerthe
further bifurcationsof the stableperiodic solutions.

Thus, for small enoughK there are 2\ stable (and a
similar numberof unstable fixed points nearthe centerof
the synchronizatiorregion. In termsof continuous-timedy-
namicalsystemsa setof stablefixed pointscorrespondso a
setof possiblesynchronizatiorregimesfor the coupledos-
cillators. A two-dimensionatorusexistsboth outside(where
it is ergodig andinside (whereit is resonantthe synchroni-
zationregion. Enteringinto the synchronizatiorregion cor-
respondgto the birth of a pair of stableand saddlecycles,
both lying on the torus surface.ln theseterms, the appear-
anceand coexistenceof otherfixed pointsof the maprepre-
sentthe birth of additionalpairs of stableand saddlecycles
on the torus surfacewhich do not intersecteachother.

In this way we candraw the following conclusionscon-
cerning synchronization of high-periodic oscillations in
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FIG. 6. One-parametebifurcation diagramfor the model map (K=0.5,
0=0.45,B=1.2, N=3). The figure showshow the coexisting noise in-
flicted periodic orbits one by onelosetheir synchronizationComparewith
Fig. 2, showinga similar phenomenorior the coupledRosslersystems.

coupledperiod-doublingsystems(i) Thereare2N coexisting
synchronoussolutions which differ from one another by
phaseshifts; and (ii) the boundaryof synchronizationfor
thesesolutionsconsistsof a setof tonguesinsertedoneinto
the other.

The questionis now howthe resultslisted heremanifest
themselvesn the caseof two interactingchaoticoscillators.
We restrictour considerationgo highly dissipativesystems.
Suchsystemscanreasonablybe characterizedby a few spe-
cific time scales.The first of theseis the returntime to a
surfaceof section(quasi-periocbf oscillationg, andthe sec-
ondis thetime constantharacterizinghetransientapproach
to some attractor. Thus, highly dissipativedynamical sys-
tems cannotdistinguishan extremelyhigh-periodicregime
from a weakly-chaoticone if the envelopsof their Fourier
spectraareassumedo coincide.Fromanotherpoint of view,
this type of chaoticmotion may be considerecdas a regular
behaviorwith an appliedrandomexcitation.

It is well-known that for the period-doublingroute to
chaos the chaotic attractor has an N-band structure (N
=1,2,4,...)within a rangeof control parametersThis struc-
ture is geometrically similar to the structure for the
N-periodic cycles. Thus, let us simulatean N-band chaotic
attractorusingthe modelmap (7) with an addednoiseterm.
The logistic mapseemsdo be anappropriablesourceof such
randomforcing:

oN, ,=0N+Q—-KFNON)+Bx, mod2"2,

Xnt+1=AXp(1=Xp), (1)
wherethe valueof \ is fixed at 3.99. Note that we introduce
the sourceof noisein the aboveway (not the Gaussiamoise,
for example to keepthe multi-band structureof a chaotic
attractor.

Within somerangeof noiseamplitudeB, the attractors
producedby this equationbecomeirregular but they still
coexistin the phasespaceof the systemand their basinsof
attractiondiffer. WhenB is furtherincreasedthe mergingof
attractorsbecomespossible?’

Figure 6 showsa one-parametebifurcation diagramfor
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the caseof an 8-bandchaoticattractor.Thereare eight dif-
ferent synchronouschaotic regimeswhich coexistat small
Q. When() increaseshe coexistingchaoticattractorsoneby
onedisappeant the edgesf their respectivesynchronization
regions.At 1=0.535a single synchronoussolutionis still
stable.Note, how the “ghosts” of all eight synchronouso-
lutions are still distinguishablenside the region of merged
chaosat ()>0.6. The numberof possiblesynchronouse-
gimesdecreasem the sameway asfor coupledRasslersys-
tems(Fig. 2).

Hence,our conclusionswith respectto synchronization
of high-periodicregimesalsoapply for weakly-chaoticsolu-
tions. Moreover,we may concludethat (iii ) the nestedstruc-
ture of synchronizationtonguesshouldbe preservedn the
caseof anN-bandchaoticattractorandremainsimilar to the
structurefor an N-periodiccycle.

IV. CONCLUSIONS

During the lastfew yearsa significantnumberof results
have beerobtainedwithin the field of chaoticsynchroniza-
tion. However,manyquestionsstill remainopen:Whattypes
of bifurcationcanoneobserveatthetransitionfrom synchro-
nous chaotic solutionsto nonsynchronousolutions?What
arethe characteristideaturesof the synchronizatiorof chaos
with a different origin: chaosthat appearssia torusdestruc-
tion, via intermittency,or via the mergingof severalattrac-
tors?

Basedon a set of fairly generalassumptionsve have
demonstratedhe nestedstructureof phasesynchronizede-
gionsfor two dynamicalsystemswith period-doublingsand
a weak diffusive coupling. Theseregionsform the complex
multisheetstructureof the synchronizatiomegionfor a setof
coexistingsynchronoussolutions.Inside theregion of cha-
otic oscillationsmultistability is extendedup to the complete
mergingof multi-band chaoticattractorswith variousmean
phasedifferences.The sequenceof bifurcationsassociated
with the mergingof chaoticattractorsfrom differentfamilies
finally leadsto the appearancef hyperchaosandto the de-
structionof phaselocking.

We concludeour study by listing severalimportantis-
suedeft for futureinvestigation First, the procesof theloss
of lag synchronizatiorinside the region of phasesynchroni-
zationwould haveto be studied.Second,phase-lockinge-
gionsfor eachfamily of chaoticattractorsshouldbe investi-
gatedin terms of periodic orbits embeddedin the chaos.
Finally, the role of multistability in phasesynchronization
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canbe generalizedo systemsdemonstratingpther routesto
chaos.
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