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Chaotic bursting as chaotic itinerancy in coupled neural oscillators
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We show that chaotic bursting activity observed in coupled neural oscillators is a kind of chaotic
itinerancy. In neuronal systems with phase deformation along the trajectory, diffusive coupling
induces a dephasing effect. Because of this effect, an antiphase synchronized solution is stable for
weak coupling, while an in-phase solution is stable for very strong coupling. For intermediate
coupling, a chaotic bursting activity is generated. It is a mixture of three different states: an
antiphase firing state, an in-phase firing state, and a nonfiring resting state. As we construct
numerically the deformed torus manifold underlying the chaotic bursting state, it is shown that the
three unstable states are connected to give rise to a global chaotic itinerancy structure. Thus we
claim that chaotic itinerancy provides an alternative route to chaos via torus breakdown. ©2003
American Institute of Physics.@DOI: 10.1063/1.1598691#
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The central nervous system consists of billions of neurons
and each of them are connected to thousands of othe
neurons by synapses. The complexity of the neural net
work has defied detailed analysis for the understanding
of information processing in the brain. With the develop-
ment of new experimental techniques, simultaneous mea
surement of hundreds to thousands of neurons now be
comes possible. Together with computation modeling, it
enables us to analyze the network activity. As a complex
system, the emergent behavior of the network, like collec-
tive synchronous activity, multistability, and adaptation
of the network will be very interesting to investigate. As
chaotic bursting activity is also one of the most frequently
observed dynamic neural activities, interest in the role of
chaotic itinerant activity in information processing is now
growing. Still we do not know much about this state.
Therefore, the study of two coupled neural oscillator sys-
tems presented in this paper will shed light on the mecha-
nism of its generation.

I. INTRODUCTION

Bursting activity has been observed in numerous ne
ronal systems1 and cells.2 In neuronal systems, it is a slow
alternation between a sequence of fast repetitivespiking
phases andsilent nonspiking phases. Usually, the burstin
activity occurs in chaotic form.3 Recent experimental result
in neurobiology have renewed interests in the coopera
dynamical properties with a possible role of information p
cessing in the brain.4 The role of chaotic bursting behavio
on the information processing in neural system especi
attracts the interest of theoreticians.5–7

A typical approach to bursting phenomena is based
systems with bothfast and slow variables. For bursting be
havior, the fast variables which are responsible for the fir
activity should exhibit multistability, coexistence of a restin
1101054-1500/2003/13(3)/1105/5/$20.00
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state and a regular firing state, while the slow variable act
a control parameter for fast dynamics. As the slow varia
drives the fast dynamics from a parameter regime of
resting state to another parameter regime of the firing st
we observe bursting behavior. Recently, a systematic cla
fication of mathematical models of bursting was presen
based on the possible types of local or global bifurcations
fast dynamics.8,9

An alternative mechanism of bursting behavior whi
does not utilize additional slow variables was propos
recently.10 It occurs in coupled systems as a consequenc
mutual interactions between fast spiking neurons. In n
ronal systems with phase deformation along the perio
limit cycle, weak diffusive coupling in one dynamic variab
inducesdephasingthat leads to the antiphase, rather th
in-phase, synchronization. It was observed by Sherman
Rinzel11 and investigated in detail in Refs. 10 and 12. F
strong diffusive coupling, due to mutual attraction towa
each other, the in-phase solution becomes stable. For in
mediate coupling, both the antiphase solution and the
phase solution lose stability. Instead, a chaotic bursting s
alternating between the transitory anti- and in-phase s
tions and the nonfiring state is obtained. It is similar tocha-
otic itinerancyobserved in high-dimensional systems.13–15

In high-dimensional systems, multistability with co
existing stable solutions occurs very frequently. As the sta
solutions lose their stability with a change of the cont
parameter, the basins of attraction of each of the stable s
tions are connected to each others through unstable m
folds. Then, an attracting state which traces out sequent
all of the destabilizedattractor ruinsemerges. This is a cha
otic itinerant state. Due to the complexity of the hig
dimensional system, however, no detailed illustrations t
show how those unstable manifolds are organized to g
rise to a global manifold structure of the chaotic itineran
were presented up to now. Although the diffusively coupl
two-oscillator system presented in this paper is relativ
5 © 2003 American Institute of Physics
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simple, it exhibits chaotic itinerancy. Using this model, w
will show how the manifolds of the unstable solutions org
nize to generate the global manifold structure of chao
itinerancy.

In Sec. II we present a mathematical model of coup
neural oscillators. A bifurcation diagram showing the para
eter regime of chaotic bursting is presented. Characteris
of chaotic bursting are presented in Sec. III. In Sec. IV
numerical construction of manifold organization is pr
sented. We explain how the manifolds of unstable soluti
organize to give rise to a global chaotic itinerant attrac
Finally, in Sec. V we compare the route to chaotic itineran
with the conventional route to chaos via destruction of
resonant torus.

II. COUPLED NEURAL OSCILLATORS

Our studies are based on the Morris–Lecar neu
model.16 It is a simplified version of the Hodgkin–Huxle
model,17 which describes the spiking behavior and refracto
properties of real neurons. Although the ML model has o
two dynamical variables, it exhibits most of the dynam
features of the Hodgkin–Huxley model, including stimulu
dependent excitability and oscillatory behavior.

A two-coupled ML model is described by the equatio
for transmembrane voltagev1,2 and activation variablew1,2:

dv1,2

dt
52Jion~v1,2,w1,2!1J1,21g~v2,12v1,2!,

~1!
dw1,2

dt
5 f

w`~v1,2!2w1,2

tw~v1,2!
,

whereJ1,2 is the external current stimulus andg is the cou-
pling strength. For functions and parameters, see Ref.
The parameters in this equation are chosen such that a s
oscillator has three fixed points, one stable, one saddle,
one unstable fixed point. A limit cycle surrounding the u
stable fixed point is generated via subcritical Hopf bifurc
tion and disappears via homoclinic connection.11

Let us consider the coupling of two identical oscillato
with J15J2 and take the coupling strengthg varied. Because
of the presence of a saddle point near the limit cycle,
diffusive coupling gives rise to the dephasing effect. Due
this effect, the antiphase synchronized solution, rather t
the in-phase solution, is stable at weak couplingg⇒0.10–12

With an increase ofg, due to the nature of the diffusiv
coupling, the antiphase solution destabilizes. At largeg
.0.5, the two oscillators tend to oscillate in-phase. For
termediate coupling, the regions of stable out-of-phase s
tions are overlapping with those of the antiphase and
phase synchronization.

The two-parameter bifurcation diagram in Fig. 1 hig
lights a triangular region of chaotic bursting. It is bounded
oneSN line and twoBC lines. The lineSNdenotes a saddle
node bifurcation of the resonant phase cycles. Below
line, the antiphase synchronized solution is stable, while o
of-phase solutions are stable above this line. On the two l
BC, the chaotic bursting attractor undergoes bound
crisis,19,20 colliding with other limit cycles or their mani-
Downloaded 26 Nov 2003 to 130.225.87.62. Redistribution subject to AIP
-
c

d
-
cs
a

s
r.
y
e

n

y
y

-

8.
gle
nd
-
-

e
o
n

-
u-
-

y

is
t-
es
y

folds. Therefore, within the triangular region, neither the a
tiphase solution nor the out-of-phase solutions are stable.
a full bifurcation diagram, see Ref. 21.

III. CHAOTIC BURSTING BEHAVIOR

As the coupling strength is increased tog50.083 15
along the lineJ250.075 in Fig. 1, the regime of antiphas
synchronous oscillation suddenly turns to a chaotic burs
regime. A typical time trajectory in the chaotic bursting r
gime is shown in Fig. 2. It is mixed with high amplitud
oscillations representing repetitive spiking and nonspik
silent zones. Note that the interspike intervals are of order
~in arbitrary units!, while the interbursting intervals are o
order 1000. The interspike interval is quite constant over
region of chaotic bursting, but the interburst intervals depe
on the coupling strength. As shown in the inset, the hig
amplitude oscillations are also divided into two parts: o
with high-amplitude oscillation and the other with medium
amplitude oscillation. Therefore, the bursting activity is co
posed of three different parts: a high-amplitude regular sp
ing, a medium-amplitude regular spiking, and a nonspik
small-amplitude oscillation~a silent zone!.

Projection of phase portrait onto a phase plane (V1,V2)
in Fig. 3~a! clarifies the characteristics of the three differe
parts. An in-phase synchronization, an antiphase synchr
zation, and a small-amplitude oscillation correspond to

FIG. 1. ~Color online! The region of chaotic bursting attractor is highlighte
in two-dimensional parameter space,J2 andg. TheSN andBC denote the
saddle-node bifurcation and the boundary crisis, respectively.J1 parameter
is fixed asJ150.075.

FIG. 2. A typical time trajectory of chaotic bursting behavior. One period
the burst activity is enlarged in the inset.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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high-amplitude spiking, the medium-amplitude spiking, a
nonspikingsilent state in Fig. 2, respectively. Therefore, th
chaotic bursting is composed of an itinerant process
traces from in-phase oscillation to antiphase oscillatio
then to the silent state and back again to the in-ph
oscillation.

Lyapunov exponents are plotted in Fig. 3~b! as a func-
tion of coupling strengthg. The largest Lyapunov exponen
l1 has a distinctive positive value in the limited interval
gP@0.083 15; 0.088 41#, which implies that the bursting ac
tivity is chaotic. The abrupt change ofl1 from negative to
positive value indicates that the crises are the cause
transitions.

IV. FORMATION OF CHAOTIC ITINERANT STRUCTURE

As described in the preceding section, the chaotic bu
ing behavior is composed of three parts: the antiphase s
tion, the in-phase solution, and the silent state. It is qu
interesting to understand how the chaotic behavior is s
denly generated from regular firing states and how the g
metric manifold is organized to connect the three states.

FIG. 3. ~a! Projection of time trajectory onto (v1 ,v2). For J15J250.075
and g50.084, the trajectory sequentially passes through the stages o
tiphase and in-phase oscillations as well as small amplitude stage.~b! Three
largest Lyapunov exponents vs coupling strengthg. The chaotic behavior is
observed forgP(0.083 15, 0.088 41).
Downloaded 26 Nov 2003 to 130.225.87.62. Redistribution subject to AIP
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In general, for two weak diffusively coupled oscillator
a pair of stable in-phase and unstable antiphase resonan
lutions lies on the smooth torus. While for coupled ML sy
tems, the antiphase solution is stable, with the in-phase
lution unstable. As the coupling strength increases,
antiphase solution loses its stability and, as a conseque
the resonant torus structure will also be destroyed. The p
cess of the resonant torus deformation across the bounda
the chaotic bursting region in Fig. 1 will clarify the mech
nism underlying the birth of the chaotic bursting state.
construct the manifold structure where both the stable
saddle solutions lie, we use the numerical method sugge
by Kevrekidis.24 An ensemble of configurations is dispers
around the unstable in-phase solution. As the ensem
evolves for a long time, by plotting the Poincare´ sections of
the ensemble we obtain the underlying manifold structur

In Figs. 4~a!–4~c!, the Poincare´ sections for g
50.025, 0.08, and 0.084 are presented, respectively.
weak couplingg50.025, Fig. 4~a!, an invariant closed curve
is formed by the closure of the unstable manifold of t
saddle in-phase solutionI 1 to the stable manifold of the
stable antiphase solutionA. One unstable equilibrium poin
E11 and one of the unstable out-of-phase solutionsU111

are also plotted. The stability of equilibrium states and lim
cycles are characterized by the superscript symbols ‘‘1.’’
The number of this symbol equals the number of unsta
directions in phase space.

The closure of the invariant curve is smooth near
stable solutionA in Fig. 4~a!. With an increase ofg, the torus
loses its smoothness due to wrinkling of the unstable ma
fold in the vicinity of the stable solutionA. At g
50.083 15, a saddle-node bifurcation for limit cycles occu
as the antiphase cycleA merges with the saddle cycleU1.
The Poincare´ section just before the bifurcation (g50.080)
is shown in Fig. 4~b!. Crossing the bifurcation point (g
50.084), A is no longer an attracting set and becomes
attractor ruin. Although the trajectory stays for a long time
this point, it should leave the point for another solution. T
problem is that there are no stable solutions. Instead,
equilibrium pointE11 connects the disappeared cycleU1

with saddle cycleI 1. Then along the unstable manifold o
I 1, it is reinjected to the attractor ruin ofA @Fig. 4~c!#. Thus
the plot of manifold underlying the chaotic bursting sta
reveals that it has a chaotic itinerancy structure tracing
vicinity of I 1, the attractor ruin ofA, and the equilibrium
point E11 and back again. Note that there is an alternat
pathway fromI 1 to A. Because symmetry of the syste
consisted of two identical oscillators, this pathway belongs
symmetric counterpart of the chaotic bursting solution illu
trated in Fig. 4~c!. Here and below, we focus on one of su
itinerancy processes.

V. ALTERNATIVE ROUTE TO CHAOS VIA TORUS
BREAKDOWN

Two coupled oscillators are synchronized when the f
quency mismatch between two oscillators is not bigger th
a certain limit that depends on the coupling strength. Ty
cally, the synchronized zone, called aresonant horn, is
bounded by two saddle-node bifurcation lines. Beyond th

n-
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1108 Chaos, Vol. 13, No. 3, 2003 S. K. Han and D. E. Postnov
lines, we have either a quasiperiodic, or a chaotic solut
Universal features of routes to chaos are characterized by
different schemes of the destruction of resonant torus. I
summarized by the Afraimovich–Shilnikov ~AS!
theorem.22,23 The possible routes to chaos via destruction
the resonant torus are~i! the saddle-node bifurcation of th
stable resonant cycle and the saddle resonant cycle;~ii ! the
occurrence of the homoclinic structure involving both sta
and unstable manifolds of the saddle resonant cycle; and~iii !
the period doubling bifurcation of the stable resonant cyc

The transition to chaotic itinerancy described in the p
ceding section looks similar to the AS scenario~i!, but there
are several differences. For a comparison, schematic illus

FIG. 4. ~a! A Poincarésection for resonant torus with smooth closure
manifolds.~b! Development of wrinkling in the vicinity of the stable cycle
Folded structure is enlarged in the inset.~c! A Poincarésection for chaotic
bursting.
Downloaded 26 Nov 2003 to 130.225.87.62. Redistribution subject to AIP
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tions of the typical AS scenario~i! are plotted on the top row
of Figs. 5~1a!–5~1d!, while on the bottom row, Figs. 5~2a!–
5~2d!, the corresponding steps of the coupled ML system
plotted.

As shown in Figs. 5~1a! and 5~2a!, the structures of the
manifold at the tip of the resonant horns are very similar
each other except for the stability of two resonant cyclei
and a. As expected, the invariant closed curve is smoot
formed by the closure of manifolds of resonant cycles.24,25At
least for weak coupling, the resonant cycles are accompa
by one unstable equilibrium point and two saddle lim
cycles ‘‘inside’’ the torus. Two limit cycles do not play a rol
in the transition, hence are not denoted in Fig. 5. Note t
for the coupled ML models, the antiphase solutiona, rather
than the in-phase solutioni is stable.

The increase of coupling strength leads to formation
the folded structure near the stable resonant limit cycle@Figs.
5~1b! and 5~2b!#. In the ML system, however, there is on
more event for the step~2a!→~2b!. The unstable limit cycle
u111 appears from an equilibrium pointe1111 via an in-
verse subcritical Hopf bifurcation,e1111→e111u111.
As a result,e11 is a saddle–focus point whose stable ma
fold comes fromu111, while the unstable manifold is con
nected to the stable manifold of saddle cyclei 1.

For step~1a!→~1b!, the control parameter is changed
move toward the boundary of the resonant horn. At
boundary of the resonant horn, the mutual convergence
the stable and saddle cycles leads to saddle-node bifurca
~1c!. For step~2a!→~2b!, let’s increase the coupling strengt
along the lineJ250.075 in Fig. 1. Atg50.083 15, a saddle
node bifurcation occurs~2c!. Note that the unstable cycl
u111 undergoes an inverse torus bifurcation and become
saddle one,u1. And the saddle solutionu1 gradually con-
verges to the stable resonant cyclea.

In case~1c!, both the stable and the saddle limit cycl
are lying on the torus surface while for case~2c!, they are
not. Both in ~1c! and ~2c!, the stable resonant cycle disa
pears as a result of the saddle-node bifurcation and leave
attractor ruin.

At the attractor ruin, the trajectory remains there for
long time, but finally escapes from the point along the u
stable manifold. However, the fate of the escape from

FIG. 5. Schematic diagrams illustrating deformation of manifold structu
In the top row, ~1a!–~1d!, AS scenario is presented. In the bottom ro
~2a!–~2d!, the Poincare´ sections leading to chaotic bursting behavior for tw
diffusively coupled ML models are presented.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1109Chaos, Vol. 13, No. 3, 2003 Chaotic bursting and chaotic itinerancy
attractor ruin is quite different for two cases: For the A
scenario,~1d!, the escaped trajectory rotates along the inva
ant closed curve and reinjected back to the position of
attractor ruin. Then the trajectory shows an intermitte
chaos. For the ML system,~2d!, as the stable cyclea anni-
hilated with the saddle cycleu1, the trajectory at the attrac
tor ruin, denoted asã, escapes from this point after a lon
transient period. The escape does not follow the former to
surface because the saddle cyclei 1 still exists. As the un-
stable manifoldã, which inherits the disappeared cycleu1,
is connected to the stable manifold of equilibrium pointe11,
the escape from theã moves toe11. After a transient pe-
riod, along the unstable manifold ofe11, it moves toward
i 1. After another transient period ati 1, the trajectory fol-
lows the unstable manifold ofi 1 and reinjected intoã. The
itinerant trajectory tracing sequentially the antiphase, sm
amplitude, and in-phase states is responsible for the cha
bursting behavior.

Let’s consider the possibility of the chaotic itineran
structure consisting of an attractor ruin of a stable in-ph
solution and an unstable anti-phase solution in the
weakly coupled oscillators. As explained in the above, it
very evident that the AS scenario~i! is very different from
the chaotic itinerancy structure observed in ML system
While for the AS scenario~ii ! and ~iii !, the local manifold
structures near the in-phase solution are broken, but no
global manifold structures. Therefore, the appearance of
chaotic itinerancy is not expected.

VI. CONCLUSION

We have presented a coupled Morris–Lecar neu
model that shows chaotic bursting behavior. The time tra
tory of the chaotic bursting state consists of three differ
parts: the high-amplitude oscillation, the medium-amplitu
oscillation, and the nonfiring silent state. Numeric
construction of manifold underlying the chaotic bursti
state reveals there is a chaotic itinerancy structure
connects three unstable solutions: an antiphase synchron
solution, an in-phase synchronized solution, and an unst
equilibrium point. We have also shown that the rou
to chaotic bursting is different from the convention
Afraimovich–Shilnikov scenario of resonance tor
breakdown. Therefore, the chaotic itinerancy will be
alternative route to chaos via resonant torus breakdo
As was shown recently, the chaotic itinerancy could
observed in higher dimensional systems with abund
unstable solutions.26,27 Therefore it will be very interesting
to know how the chaotic itinerancy structure will pers
in high-dimensional ML systems. The effect of the noi
in the chaotic itinerancy will be also an interesting iss
to be studied.
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