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We show that chaotic bursting activity observed in coupled neural oscillators is a kind of chaotic
itinerancy. In neuronal systems with phase deformation along the trajectory, diffusive coupling
induces a dephasing effect. Because of this effect, an antiphase synchronized solution is stable for
weak coupling, while an in-phase solution is stable for very strong coupling. For intermediate
coupling, a chaotic bursting activity is generated. It is a mixture of three different states: an
antiphase firing state, an in-phase firing state, and a nonfiring resting state. As we construct
numerically the deformed torus manifold underlying the chaotic bursting state, it is shown that the
three unstable states are connected to give rise to a global chaotic itinerancy structure. Thus we
claim that chaotic itinerancy provides an alternative route to chaos via torus breakdo@f0®
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The central nervous system consists of billions of neurons
and each of them are connected to thousands of other
neurons by synapses. The complexity of the neural net-
work has defied detailed analysis for the understanding
of information processing in the brain. With the develop-
ment of new experimental techniques, simultaneous mea-
surement of hundreds to thousands of neurons now be-
comes possible. Together with computation modeling, it
enables us to analyze the network activity. As a complex
system, the emergent behavior of the network, like collec-
tive synchronous activity, multistability, and adaptation
of the network will be very interesting to investigate. As
chaotic bursting activity is also one of the most frequently
observed dynamic neural activities, interest in the role of
chaotic itinerant activity in information processing is now
growing. Still we do not know much about this state.
Therefore, the study of two coupled neural oscillator sys-
tems presented in this paper will shed light on the mecha-
nism of its generation.

I. INTRODUCTION

state and a regular firing state, while the slow variable acts as
a control parameter for fast dynamics. As the slow variable
drives the fast dynamics from a parameter regime of the
resting state to another parameter regime of the firing state,
we observe bursting behavior. Recently, a systematic classi-
fication of mathematical models of bursting was presented
based on the possible types of local or global bifurcations of
fast dynamic$:®

An alternative mechanism of bursting behavior which
does not utilize additional slow variables was proposed
recently'® It occurs in coupled systems as a consequence of
mutual interactions between fast spiking neurons. In neu-
ronal systems with phase deformation along the periodic
limit cycle, weak diffusive coupling in one dynamic variable
inducesdephasingthat leads to the antiphase, rather than
in-phase, synchronization. It was observed by Sherman and
Rinzef! and investigated in detail in Refs. 10 and 12. For
strong diffusive coupling, due to mutual attraction toward
each other, the in-phase solution becomes stable. For inter-
mediate coupling, both the antiphase solution and the in-
phase solution lose stability. Instead, a chaotic bursting state
alternating between the transitory anti- and in-phase solu-
tions and the nonfiring state is obtained. It is similacta-

Bursting activity has been observed in numerous neu-otic itinerancyobserved in high-dimensional systefis!®

ronal systemsand cell$’ In neuronal systems, it is a slow

alternation between a sequence of fast repetispéing

In high-dimensional systems, multistability with co-
existing stable solutions occurs very frequently. As the stable

phases andilent nonspiking phases. Usually, the bursting solutions lose their stability with a change of the control
activity occurs in chaotic form.Recent experimental results parameter, the basins of attraction of each of the stable solu-
in neurobiology have renewed interests in the cooperativéions are connected to each others through unstable mani-
dynamical properties with a possible role of information pro-folds. Then, an attracting state which traces out sequentially
cessing in the braifi.The role of chaotic bursting behavior all of the destabilizedttractor ruinsemerges. This is a cha-
on the information processing in neural system especiallptic itinerant state. Due to the complexity of the high-
attracts the interest of theoreticiah¥. dimensional system, however, no detailed illustrations that
A typical approach to bursting phenomena is based oshow how those unstable manifolds are organized to give
systems with botHast and slow variables. For bursting be- rise to a global manifold structure of the chaotic itinerancy
havior, the fast variables which are responsible for the firingvere presented up to now. Although the diffusively coupled
activity should exhibit multistability, coexistence of a resting two-oscillator system presented in this paper is relatively
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simple, it exhibits chaotic itinerancy. Using this model, we T J T T v
will show how the manifolds of the unstable solutions orga- 0.090 - Qut-of-phase oscillations 1
nize to generate the global manifold structure of chaotic o
itinerancy. 0.088 |- !
In Sec. Il we present a mathematical model of coupled o
neural oscillators. A bifurcation diagram showing the param- > 0.086 L E‘* " BC i
eter regime of chaotic bursting is presented. Characteristics
of chaotic bursting are presented in Sec. lll. In Sec. IV, a ,  Chaolic bursling =,
numerical construction of manifold organization is pre- 0.054 = 2 ]
sented. We explain how the manifolds of unstable solutions : = — =gl
organize to give rise to a global chaotic itinerant attractor. 0.082 - Anti-phase synchronous oscillations
Finally, in Sec. V we compare the route to chaotic itinerancy = = '
with the conventional route to chaos via destruction of the Djﬁm
resonant torus. 2

i
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FIG. 1. (Color online The region of chaotic bursting attractor is highlighted
in two-dimensional parameter spadg,andy. The SN andBC denote the
Il. COUPLED NEURAL OSCILLATORS saddle-node bifurcation and the boundary crisis, respectidglgarameter

. . is fixed asJ;=0.075.
Our studies are based on the Morris—Lecar neuron

model® It is a simplified version of the Hodgkin—Huxley
modell’ which describes the spiking behavior and refractoryfolds. Therefore, within the triangular region, neither the an-
properties of real neurons. Although the ML model has onlytiphase solution nor the out-of-phase solutions are stable. For
two dynamical variables, it exhibits most of the dynamica full bifurcation diagram, see Ref. 21.
features of the Hodgkin—Huxley model, including stimulus-
dependent excitability and oscillatory behavior. Ill. CHAOTIC BURSTING BEHAVIOR

A two-coupled ML model is described by the equations

for transmembrane voltagg , and activation variablev, ,: As the coupling strength is increased fo=0.083 15

along the lineJ,=0.075 in Fig. 1, the regime of antiphase

dvy, synchronous oscillation suddenly turns to a chaotic bursting
ar ~Jion(v1,2:W12) +J10F ¥(V217 019, regime. A typical time trajectory in the chaotic bursting re-
(1) gime is shown in Fig. 2. It is mixed with high amplitude

dwi,  Wo(vg)—Wyp oscillations representing repetitive spiking and nonspiking

dt Tw(vi) silent zones. Note that the interspike intervals are of order 10

(in arbitrary unitg, while the interbursting intervals are of
é)rder 1000. The interspike interval is quite constant over the

The parameters in this equation are chosen such that a sindl%gion of chaotic bursting, but the interburst intervals depend

oscillator has three fixed points, one stable, one saddle, and’ the couplln_g ;trength. As shqu n Fhe inset, the _h'gh'
one unstable fixed point. A limit cycle surrounding the un_amphtude oscillations are also divided into two parts: one

stable fixed point is generated via subcritical Hopf bifurca—WIth h|gh-amplltUQe oscillation and the ot.her W't.h. m§d|um—
tion and disappears via homoclinic connectidn. amplitude oscillation. Therefore, the bursting activity is com-

Let us consider the coupling of two identical oscillators posed of three different parts: a high-amplitude regular spik-

with J;=J, and take the coupling strengthvaried. Because ng, a med'ium-ampl'itud'e regular spiking, and a nonspiking
of the presence of a saddle point near the limit cycle, thesmag-a_mptl!tudefosrcltlIlatlorﬁatsn_ttant ztone). h Ve V2
diffusive coupling gives rise to the dephasing effect. Due to rojection of phase portrait onto a phase plavi¢,2)

this effect, the antiphase synchronized solution, rather thall! Fig. 3(a)_ clarifies the chara_cte_r istics of th_e three different_
the in-phase solution, is stable at weak coupling 01012 parts. An in-phase synchronization, an antiphase synchroni-

With an increase ofy, due to the nature of the diffusive zation, and a small-amplitude oscillation correspond to the

coupling, the antiphase solution destabilizes. At large
>0.5, the two oscillators tend to oscillate in-phase. For in-
termediate coupling, the regions of stable out-of-phase solu-
tions are overlapping with those of the antiphase and in- o
phase synchronization. 02

The two-parameter bifurcation diagram in Fig. 1 high- T
lights a triangular region of chaotic bursting. It is bounded by
oneSNline and twoBC lines. The lineSNdenotes a saddle- .7 00
node bifurcation of the resonant phase cycles. Below this
line, the antiphase synchronized solution is stable, while out- g2 - o
of-phase solutions are stable above this line. On the two lines At=2000

BC, ltggo cha_lo_tic bL_lrsting attractor undergoeS_ bounglaryqG.z. Atypical time trajectory of chaotic bursting behavior. One period of
crisis;~<" colliding with other limit cycles or their mani- the burst activity is enlarged in the inset.

whereJ, , is the external current stimulus andis the cou-
pling strength. For functions and parameters, see Ref. 1
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0.20 - T . . . T . In general, for two weak diffusively coupled oscillators,
(a) a pair of stable in-phase and unstable antiphase resonant so-
] lutions lies on the smooth torus. While for coupled ML sys-
tems, the antiphase solution is stable, with the in-phase so-
lution unstable. As the coupling strength increases, the
antiphase solution loses its stability and, as a consequence,
the resonant torus structure will also be destroyed. The pro-
7 cess of the resonant torus deformation across the boundary of
the chaotic bursting region in Fig. 1 will clarify the mecha-
nism underlying the birth of the chaotic bursting state. To
construct the manifold structure where both the stable and
saddle solutions lie, we use the numerical method suggested
by Kevrekidis®* An ensemble of configurations is dispersed
around the unstable in-phase solution. As the ensemble
evolves for a long time, by plotting the Poincasections of
the ensemble we obtain the underlying manifold structure.
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Vi In Figs. 4a)-4(c), the Poincare sections for y
0.03 . . : =0.025,0.08, and 0.084 are presented, respectively. For
- ] weak couplingy=0.025, Fig. 4a), an invariant closed curve
0.02 is formed by the closure of the unstable manifold of the
0.01 I saddle in-phase solution” to the stable manifold of the
I stable antiphase solutioh. One unstable equilibrium point
< 000 E** and one of the unstable out-of-phase solutibhs" *
i are also plotted. The stability of equilibrium states and limit
-0.01 cycles are characterized by the superscript symbats”“
~0.02 I The number of this symbol equals the number of unstable
k directions in phase space.
— .08 082 The closure of the invariant curve is smooth near the

stable solutiorA in Fig. 4(a). With an increase of, the torus
b loses its smoothness due to wrinkling of the unstable mani-
FIG. 3. (a) Projection of time trajectory ontav(,v,). ForJ;=J,=0.075  fold in the vicinity of the stable solutionA. At y
and y=0.084, the trajectory sequentially passes through the stages of ar=0.083 15, a saddle-node bifurcation for limit cycles occurs
tiphase and in-phase oscillations as well as small amplitude stagehree as the antiphase cyclk merges with the saddle CycLeJr_
largest Lyapunov exponents vs coupling strengtfihe chaotic behavior is The Poincaresection just before the bifurcationy € 0.080)
observed fory < (0.083 15, 0.088 41). is shown in Fig. 4b). Crossing the bifurcation pointy
=0.084), A is no longer an attracting set and becomes an
. ) o ] ] . attractor ruin. Although the trajectory stays for a long time at
high-amplitude spiking, the medium-amplitude spiking, ands point, it should leave the point for another solution. The
nonspikingsilent state in Fig. 2, respectively. Therefore, the problem is that there are no stable solutions. Instead, the
chaotic bursting is composed of an itinerant process thaéquilibrium pointE** connects the disappeared cytle
traces from in-phase oscillation to antiphase oscillationsyith saddle cycld *. Then along the unstable manifold of
then to the silent state and back again to the in-phasg+ it s reinjected to the attractor ruin @ [Fig. 4(c)]. Thus
oscillation. o the plot of manifold underlying the chaotic bursting state
Lyapunov exponents are plotted in FighBas a func-  eyeals that it has a chaotic itinerancy structure tracing the
tion of coupling strengthy. The largest Lyapunov exponent yjicinity of | *, the attractor ruin ofd, and the equilibrium
\1 has a distinctive positive value in the limited interval of point E** and back again. Note that there is an alternative
}/g[O..OSB 15;. 0.088 411 which implies that the burstjng ac- pathway froml™ to A. Because symmetry of the system
tivity is chaotic. The abrupt change af from negative 1o consisted of two identical oscillators, this pathway belongs to
positive value indicates that the crises are the cause Qfymmetric counterpart of the chaotic bursting solution illus-
transitions. trated in Fig. 4c). Here and below, we focus on one of such
itinerancy processes.

IV. FORMATION OF CHAOTIC ITINERANT STRUCTURE  \/ ALTERNATIVE ROUTE TO CHAOS VIA TORUS

As described in the preceding section, the chaotic burstEsREAKDOWN

ing behavior is composed of three parts: the antiphase solu- Two coupled oscillators are synchronized when the fre-
tion, the in-phase solution, and the silent state. It is quiteqguency mismatch between two oscillators is not bigger than
interesting to understand how the chaotic behavior is suda certain limit that depends on the coupling strength. Typi-
denly generated from regular firing states and how the geazally, the synchronized zone, called rasonant horn is

metric manifold is organized to connect the three states. bounded by two saddle-node bifurcation lines. Beyond these
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v=0.025 (a)
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0.1 A ’/
—
0.0 ' : :
-0.2 -0.1 3‘0 0.1 0.2 FIG. 5. Schematic diagrams illustrating deformation of manifold structure.
1 In the top row, (18—(1d), AS scenario is presented. In the bottom row,
05 (2a)—(2d), the Poincarsections leading to chaotic bursting behavior for two
’ diffusively coupled ML models are presented.
04
03 | tions of the typical AS scenari@) are plotted on the top row
- of Figs. §1a-5(1d), while on the bottom row, Figs.(3a)—
= 5(2d), the corresponding steps of the coupled ML system are
0.2
plotted.
As shown in Figs. Bla and 52a), the structures of the
01 ¢ manifold at the tip of the resonant horns are very similar to
each other except for the stability of two resonant cycles
0-0_03 02 o1 0.0 01 anda. As expected, the invariant closed curve is smoothly
' ' 'v1 | ' formed by the closure of manifolds of resonant cyéESAt
least for weak coupling, the resonant cycles are accompanied
0.5 ' ' by one unstable equilibrium point and two saddle limit
(c) cycles “inside” the torus. Two limit cycles do not play a role
04 ¢ T 1 in the transition, hence are not denoted in Fig. 5. Note that
. for the coupled ML models, the antiphase solutanrather
03+ than the in-phase solutianis stable.
3 The increase of coupling strength leads to formation of
02 | the folded structure near the stable resonant limit cl/€igs.
5(1b) and 52b)]. In the ML system, however, there is one
01 | more event for the stefa)—(2b). The unstable limit cycle
u*** appears from an equilibrium poiet” " ** via an in-
0.0 verse subcritical Hopf bifurcatione™ ** —e*"+u*™" ",

-0.1 0.0 0.1 0.2 As aresulte®* is a saddle—focus point whose stable mani-
v, fold comes fromu™ **, while the unstable manifold is con-

FIG. 4. (a) A Poincaresection for resonant torus with smooth closure of nected to the stable manifold of saddle CyCTe_
manifolds.(b) Development of wrinkling in the vicinity of the stable cycle. For step(1a—(1b), the control parameter is changed to
Folded structure is enlarged in the ins@). A Poincaresection for chaotic ~ move toward the boundary of the resonant horn. At the

bursting. boundary of the resonant horn, the mutual convergence of
the stable and saddle cycles leads to saddle-node bifurcation
(10). For step(2a—(2b), let's increase the coupling strength
lines, we have either a quasiperiodic, or a chaotic solutionalong the linel,=0.075 in Fig. 1. Aty=0.083 15, a saddle-
Universal features of routes to chaos are characterized by theode bifurcation occurg$2c). Note that the unstable cycle
different schemes of the destruction of resonant torus. It isi* ** undergoes an inverse torus bifurcation and becomes a
summarized by the Afraimovich—Shilnikov (AS) saddle oneu™. And the saddle solution™ gradually con-
theoren???3 The possible routes to chaos via destruction ofverges to the stable resonant cyale
the resonant torus ai@) the saddle-node bifurcation of the In case(1c), both the stable and the saddle limit cycles
stable resonant cycle and the saddle resonant cgiclehe  are lying on the torus surface while for ca&e), they are
occurrence of the homoclinic structure involving both stablenot. Both in(1c) and (2c), the stable resonant cycle disap-
and unstable manifolds of the saddle resonant cyclefi@nd pears as a result of the saddle-node bifurcation and leaves an
the period doubling bifurcation of the stable resonant cycleattractor ruin.
The transition to chaotic itinerancy described in the pre- At the attractor ruin, the trajectory remains there for a
ceding section looks similar to the AS scend(iip but there  long time, but finally escapes from the point along the un-
are several differences. For a comparison, schematic illustratable manifold. However, the fate of the escape from the
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