
Nonlinear Studies Nonlinear Studies
Vol. 11, No. 3, pp. 449-467, 2004 c©I&S Publishers

Daytona Beach, FL 2004

Noise-Activated And Noise-Induced

Rhythms In Neural Systems

E. Mosekilde1, O.V. Sosnovtseva1, D. Postnov2,
H.A. Braun3, and M.T. Huber3

1 Department of Physics,
The Technical University of Denmark,
2800 Kgs. Lyngby, Denmark

2 Physics Department,
Saratov State University,
Astrakhanskaya Str. 83, Saratov, 410026, Russia

3Institute of Physiology,
University of Marburg,
Deutschhausstr. 2, D-35037 Marburg, Germany

Abstract The dynamical features of spike train generation in the presence of noise
are investigated for three different models of neural rhythm generators: a single
neuron model that simulates impulse pattern modulation for temperature encoding
in mammalian cold receptors, a minimal neural network that describes transitions
between beta and gamma rhythms in the brain and an electronic switching device
that represents a simple breathing rhythm generator for a snail. We show that
noise can explain a number of peculiarities in the observed spike trains, cause
coherent switchings between different states, and induce new rhythms in small
neural ensembles.

1 Introduction

The spatiotemporal characteristics of neural firing patterns in connection with
brain function have received considerable interest, and many studies have been
performed in order to understand the origin and role of various forms of synchro-
nized neural activity (e.g., [1, 2]). Even single functional units demonstrate flexi-
ble neuronal patterns, and experimental recordings of peripheral sensory receptors
and central neurons show more or less continuous transitions between different
types of oscillatory patterns as a function of physiologically relevant stimuli [3, 4].
In accordance with experimental observations on mammalian cold receptors, the
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Huber/Braun model [5], for example, reproduces tonic activities or bursting dis-
charges due to slow oscillation cycles each triggering a group of impulses during
its suprathreshold phase. Moreover, there exist irregular patterns of apparently
chaotic origin [6, 7] while other patterns that can be explained only with essential
contributions of noise are typical for thermosensitive neurons [4].

The complex and multifarious effects of noise on neural firing have not yet been
fully understood. Neural activity is known to be noisy [8], and this stochastic fea-
ture is observed during both information transmission and spontaneous firing. At
the same time, noise can play a constructive role in neural systems. In the pres-
ence of a subthreshold signal, the excitation threshold may be crossed when noise
is superimposed onto the signal. This happens with high probability when the
signal has its maximum and, hence, allows the biological system to detect signals
that without noise would remain subthreshold [9, 10], demonstrating the effect of
stochastic resonance [11]. An excitable neuronal system can exhibit the related
phenomenon of coherence resonance [12]. In this case, there is no underlying pe-
riodic signal, and the resonance phenomenon is controlled by the noise intensity
and the time of relaxation. Stochastic synchronization phenomena, i.e., the syn-
chronization of noise-activated or noise-induced rhythms, have been studied in
electrosensitive cells of the paddlefish by Neiman et al. [13]. Different types of
noisy phase-locked regimes were observed.

Many neural systems can perform oscillations in different modes. Hence, the
interesting questions arise: How is the dynamics of neural firing with multimode
behavior affected by noise, and under what conditions can noise activate new
rhythms? In this paper we focus on the following aspects:

(i) How can the presence of noise interfere with the spike generating mecha-
nisms and the subthreshold oscillations in peripheral pattern generators, and under
what conditions can it completely change the spiking pattern? The intrinsic dy-
namics is characterized by oscillatory changes in the membrane potential that are
below or close to the spike threshold. In this situation naturally occurring stochas-
tic influences due to membrane or synaptic noise can be an essential component
in signal encoding. The reason is that the noise actually determines whether a
spike is triggered during an oscillatory cycle or not. Hence, mixed patterns typ-
ically result, consisting of random sequences of spike-triggering and subthreshold
oscillations;

(ii) How is the switching process between coexisting rhythmic activities in the
brain influenced by noise? Brain oscillations are normally divided into different
types based mainly on their frequency. Rhythms in the beta (12 − 30Hz) and
the gamma (30 − 80Hz) ranges are found in many parts of the nervous system
and are associated with attention, perception and cognition. Recently Kopell et
al. [14] demonstrated that a model including both inhibitory interneurons and
excitatory pyramidal cells can produce beta as well as gamma oscillations that
employ different dynamical mechanisms to synchronize. The beta mode is able to
synchronize with long conduction delays corresponding to signals traveling over
a significant distance in the brain. Similar distances can not be tolerated by the
gamma rhythms that are used more for local communication. It has been noted in
electroencephalogram signals that rhythms of different frequencies can be found
simultaneously [15]. In this connection we describe noise-induced activities in
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terms of regularized switching events;
(iii) How can noise control the appearance of additional time scales in small

neuron ensembles? In contrast to previous studies we investigate noise-induced
rather than noise-activated oscillatory modes, i.e., we focus on time scales that are
produced and controlled by noise and that do not exist in the deterministic case.
We provide experimental observation of such multimode behavior and investigate
the conditions for generation and entrainment of the various modes.

2 Tuning cold-receptor discharges

2.1 The Huber/Braun model

Mammalian cold receptors are particularly interesting in connection with the
present analysis, both because of the complicated impulse patterns that they gen-
erate and because of the clear influence of noise. The impulse patterns are generally
characterized by regular and relatively frequent burst discharges at intermediate
temperatures with irregular and less frequent bursting patterns occurring at lower
temperatures and irregular single spike discharges observed at higher tempera-
tures. The stationary frequency vs. temperature characteristic typically displays
a maximum at intermediate temperatures (25− 30oC). This lack of monotonicity
implies that the temperature encoding must be associated with the firing pat-
tern as such and not only with the average firing rate. The Huber/Braun model of
mammalian cold receptor was described in detail in Refs [5, 16]. In brief, it consists
of two interacting minimal sets of ionic conductances, each including simplified de
- and repolarizing Hodgkin-Huxley-type currents with sigmoidal steady state ac-
tivation kinetics. For simplicity, inactivation is neglected. The two sets operate
at different voltage levels and time scales. High threshold, fast activating currents
are for spike generation (marked by indices d and r); low threshold, slow activating
currents generate subthreshold potential oscillations (indices sd and sr). Including
a leakage current Il and the applied current Iappl, the membrane potential V is
given by:

cV̇ = −Il − Id − Ir − Isd − Isr − Iappl, (1)

with c denoting the membrane capacitance. In our generalized approach we do
not refer to specific ionic currents but to the de- and repolarizing components of
the two subsystems, the spike generator and the subthreshold oscillator. Id is the
fast depolarizing current and Ir is the fast repolarizing current which reflect the
classical Na+- and K+-currents in the spike generation. The physiological basis
for the two other currents, Isd and Isr, may be different in different neurons.

The leakage current is given by

Il = gl(V − El) (2)

and the voltage-dependent ionic currents are expressed in the form:
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Ii = ρgiai(V − Ei), (3)
ai∞ = 1/(1 + exp(si(V − V0i))), (4)

ȧi = φ(ai∞ − ai)/τi. (5)

with i = d, r, sd, and sr. Here, Ei are the equilibrium potentials, gi the maxi-
mum conductances at the reference temperature T0, and ai the voltage and time-
dependent activation parameters. ρ allows for the temperature scaling of the ionic
currents. V0i and si are half-activation potentials and slopes, respectively, of the
steady state activation curves.

Exceptions to the above formulations are the assumed instantaneous activation
of the fast depolarizing current

ad = ad∞, (6)

and the direct coupling of the slow repolarizing current to the slow depolarizing
current:

ȧ = φ(ηIsd − kasr)/τsr. (7)

Here, η denotes the coupling constant and k is a relaxation factor.
The temperature dependences are expressed in terms of the scaling parameters

ρ and φ for the maximum conductances and the time constants, respectively:

ρ = 1.3(T−T0)/∆, φ = 3.0(T−T0)/∆. (8)

Here, T is the temperature at which the receptor cells operate, T0 = 25oC is the
reference temperature, and ∆ = 10oC is a scaling temperature. Each time T
increases by ∆, the maximum conductance increases by a factor 1.3 and the time
constants by a factor 3.

To account for the effect of random dynamics we have applied Gaussian white
noise according to the Fox-Mueller algorithm [17]:

gw = (−4D h ln(a))1/2cos2πb (9)

with a and b being random numbers between 0 and 1. h denotes the integration
step, and the noise intensity is adjusted by the dimensionless parameter D. The
noise is directly added to the membrane potential.

With the above simple temperature scaling and with noise implemented in
the model equations, the full variety of experimentally observed impulse pattern
evolves almost naturally. Increasing the temperature speeds up the ionic kinetics
and leads to a faster dynamics of the subthreshold oscillator. This is associated
with a decrease in the number of spikes that can be triggered per oscillation cycle.



Rhythms In Neural Systems 453

2.2 Role of noise in pattern formation

Figure 1 reproduces some of the most characteristic patterns from experimental
recordings for rat cold receptors [5] for direct comparison with the results of our
modelling studies which are shown in the traces below. It can be seen that the
model almost perfectly mimics all types of cold receptor discharges, but it also
becomes evident that at least one type of pattern can be simulated only with the
addition of noise. This is the pattern that consists of a mix of spike-generating
and subthreshold oscillations (skippings) that typically occurs in the upper tem-
perature range and can be seen in both experimental and modelling data (35oC,
left diagrams) but not in the lowest diagram which is from a completely deter-
ministic simulation (D=0). In this situation only the presence of noise allows the
subthreshold oscillations to randomly exceed the threshold for spike-generation.

Figure 1: Typical impulse patterns for cold receptors at different temperatures.
Comparison of experimentally recorded spike trains (upper traces) and modelling
results from deterministic simulations (D = 0, lowest traces) and with addition
of noise (D = 0.05 and D = 0.5, intermediate traces). The parameters of the
numerical simulations are given in Ref. [18].

The second column shows the tonic firing patterns that typically can be seen
in experimental recordings at normal skin temperatures around 30oC and which
also occur in our simulations with the appropriate temperature scaling. Noise does
not seem to have major influence on the pattern generation. There is a regular
tonic discharge because each oscillation cycle succeeds to trigger a spike – with
a single exception: at D = 0.5 one of the oscillation cycles obviously fails to
produce a spike. The upper trace indicates that a similar phenomenon may occur
in the experimental recordings: a spike is missing within an otherwise regular
tonic discharge. (Note that the simulation for D = 0.5 and T = 30oC has been
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shifted along the time axis for the missing spike to occur at the same time as
the spike in the experimental sequence). Although the missing spikes represent
singular events, their occurrence suggests that noise cannot only induce spiking
in otherwise completely subthreshold oscillations (as shown in the left traces) but
can also prevent impulse generation in otherwise regularly spiking sequences. Such
situations can cover a broad range of stimulus encodings.

In the third column of the figure we are comparing electrophysiological record-
ings and model simulations of different noise levels in the range of bursting dis-
charges. More random input simply seems to induce more random fluctuations
of spike-generation without any qualitative change of the pattern. This appears
to also be the case at the lowest temperatures where the experimental recordings
often exhibit irregular tonic discharges. The deterministic simulations generate
completely regular discharges and the addition of noise is needed to produce the
more realistically appearing irregular spike sequences.

With the addition of noise the model successfully reproduces the major types
of experimentally recorded impulse patterns and it explains how these patterns
can be related to the resonance behavior between slow subthreshold oscillations
and spike generating mechanisms. The Huber/Braun model is valuable not only
because it successfully simulates stationary cold receptor discharges, but also as a
generalized neuronal pattern generator of significant flexibility.

3 Transitions between beta and gamma rhythms

3.1 The Kopell model

In a neural system, the individual neuron is generally located in an excitatory
or inhibitory network that provides a variety of inputs to the neuron, primarily
via the synaptic currents. In the present section we consider a minimal model
for a neural network capable of producing both beta and gamma oscillations.
Developed by Kopell et al. [14], the model includes two excitatory pyramidal
neurons and one inhibitory interneuron. The network architecture is illustrated
in Fig. 2 where open and filled arrowheads represent excitatory and inhibitory
connections, respectively. Solid lines indicate fixed connections, and dotted lines
represent connections that are varied during the simulations. By contrast to the
single neuron considered in Sec. 2, the interesting features of the present system are
connected with the interaction of the different neurons. Many factors contribute
to making the environment of the network noisy. All of these factors are regarded
as random external fluctuations. As we have seen in the previous section it is likely
that neurons can use such external fluctuations to process their input signals more
effectively. Here, we shall see how the presence of noise can generate transitions
between different rhythmic modes in the network.

The Kopell model is based on Hodgkin–Huxley type neurons [19] which are
modelled in accordance with the original formulation (rather than the simplified
form used in the Huber/Braun model). There are no currents for subthreshold
oscillations. Instead, there is an additional slow potassium current that accounts
for after-hyperpolarization (ahp) in the excitatory neurons. The voltage of an
excitatory neuron is controlled by the following differential equation:
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I3

E1 E2

Figure 2: Architecture of the Kopell oscillatory network. E1 and E2 are excitatory
cells, and I3 is an inhibitory cell. Open and filled arrowheads represent excitatory
and inhibitory connections, respectively. Solid lines indicate fixed connections,
and dotted lines represent synapses whose efficacies are varied in the simulations.

cV̇ = −gl(V − El)− gNam3h(V − ENa)− gKn4(V − EK)
−gahpw(V − EK)− iesyn + ieappl. (10)

One recognizes the leak current gl(V − El), the sodium current gNam3h(V −
ENa), the potassium current gKn4(V −EK), and the additional potassium current
for after-hyperpolarization gahpw(V −EK). There is also a synaptic current input
iesyn and a term for external current application ieappl. V is the membrane potential,
Ej (j = Na or K) is the Nernst (or reversal) potentials for the respective ions,
and gj the corresponding conductances. c is the membrane capacitance.

The gating variables are assumed to obey the standard dynamical equations:

ṁ = αm(V )(1−m)− βm(V )m (11)
ḣ = αh(V )(1− h)− βh(V )h (12)
ṅ = αn(V )(1− n)− βn(V )n (13)
ẇ = αw(V )(1− w)− βw(V )w, (14)

where the α- and β-functions describe the voltage-dependent opening and clos-
ing rates for the various channels. For each excitatory neuron, a single equation
controls the state of the synapses going from this neuron to others:

ṡe = αse(V )(1− se)− βsese. (15)

Synaptic input to an excitatory neuron (here, E1) results in a current

iesyn,E1 = geese,E2(V − Ee) + giesi,I3(V − Ei). (16)

In this expression, the s-variables refer to the presynaptic neurons (E2 and I3,
respectively), whereas the voltage V refers to the postsynaptic neuron (E1). Ee

and Ei denote the reversal potentials associated with excitatory and inhibitory
synapses. A similar equation is used for the synaptic current of E2.

The inhibitory neuron I3 is very similar to E1 and E2, only the after
hyperpolarization-current is not included:

cV̇ = −gl(V − El)− gNam3h(V − ENa)− gKn4(V − EK)− iisyn + ieappl(17)
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Noting that w does not appear, the remaining gating variables for the inhibitory
neuron I3 are controlled by Eqs. (11–13).

Inhibitory synapses are governed by the equation:

ṡi = αsi(V )(1− si)− βsisi. (18)

The inhibitory neuron receives inputs from E1 and E2 as well as from a mechanism
of self-inhibition:

iisyn,I3 = (geise,E1 + geise,E2)(V − Ee) + giisi,I3(V − Ei). (19)

The detailed description of the various functions and parameter values can be
found in the original paper [14]. Two parameters are varied in the present study:
gee, the strength of the connections between E1 and E2, and gahp, the maximal
conductance for the slow potassium ion channels.
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Figure 3: From top to bottom, the figures display the membrane potentials of the
neurons E1, E2, and I3, respectively. For t < 200 ms, gee = gahp = 0.0 producing
a gamma rhythm of about 45− 50 Hz. At t = 200 ms a slowly varying potassium
current is added by setting gahp = 1.25 mS/cm2. This makes E1 and E2 switch to
beta rhythms of 16− 17 Hz. Since the spikes of E1 and E2 are out of phase, the
population of excitatory neurons considered as a whole still produces oscillations in
the gamma band. Finally, at t = 600 ms the E–E connections are added by setting
gee = 0.15 mS/cm2. This synchronizes E1 and E2, producing a beta rhythm in
the E-population. For this plot, a transient of 100 ms was removed. From left to
right, the modes observed here will be called γ, γpop and β.

As illustrated in Fig. 3, the Kopell model demonstrates three main network
modes:

• For low values of the two parameters, the three neurons spike in synchrony
with a frequency in the gamma band;

• If gahp is increased, the E1 and E2 neurons start to miss every other spike,
lowering their individual frequencies into the beta band. However, since E1
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and E2 are out of phase, the population of excitatory neurons as a whole
continues to produce gamma oscillations;

• Increasing the connection strengths between E1 and E2 makes the excitatory
neurons spike simultaneously, thereby producing beta oscillations.

A scan over a two-dimensional parameter space was carried out for gahp varied
in the range [0.0; 2.00 mS/cm2] and gee varied in the range [0.0; 0.30 mS/cm2].
The initial conditions were identical for all calculations. To determine the spik-
ing mode, the regular spiking of I3 was used. First, the temporal location of the
I3 spikes was determined. Thereupon, a window of ±5 ms around the I3 spikes
was searched for possible spikes in E1 and E2. For each point in the diagram,
spike trains for E1 and E2 were thereby produced. Hence, the oscillation mode
was characterized by these spike trains. A restriction was put upon this auto-
mated determination procedure, namely that the period of the oscillation mode
must be less than half the length of the spike train, thereby ensuring at least two
occurrences of the full period.
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Figure 4: Different oscillatory modes as functions of gee (the coupling between
excitatory neurons) and gahp (the conductance for the slow K-channel in excitatory
neurons). In the gray region, the γpop- and β-modes coexist. In the region denoted
high-order solutions we find a great variety of frequency-locked states.

The results are depicted in Fig. 4. Here, one can distinguish four to five differ-
ent oscillatory modes. For low values of gahp, the region denoted γ corresponds to
parameter values that generate gamma rhythms where all neurons (E1, E2, and
I3) spike in every cycle. The “gamma population” state γpop is located to the
left with intermediate values of gahp. In this region, the neurons E1 and E2 both
demonstrate beta rhythms of 16 − 17Hz, but their overall behavior is found to
produce oscillations in the gamma band. There is a large region β occupied by
beta oscillations where E1 and E2 are in full synchrony with half the frequency of
the γ rhythm. With increasing gahp, they evolve into the beta population βpop.
This state produces a beta rhythm, but only half as powerful as the beta state
described earlier since only one excitatory neuron (E1) spikes while another neu-
ron (E2) keeps silence. Within a range of parameters one can observe high-order
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solutions with different combinations of spiking and silent states in the two ex-
citatory neurons [21]. The dynamics seem to be limited in the gahp-direction by
the appearance of a silent-state, in which E1 and E2 never spike due to the ef-
fects of the after-hyperpolarization current in combination with the spontaneous
spiking of the I3 neuron. In the gray region, the γpop- and the β-modes coexist.
The observation of a large region with coexisting solutions may have important
inferences with respect to brain function. The question is: Can the Kopell model
switch between the coexisting states? Physiologically, the externally applied cur-
rent ieappl, together with ionic and synaptic currents, could represent the influence
of other neurons of the brain. As previously noted, this influence may in many
instances be considered as stochastic. Let us, therefore, examine the influence of
fluctuations on the switching process.

3.2 Stochastic dynamics

Since noise may have different origins and can contribute in different ways, we
assume that our network operate in a noisy field (Fig. 2). We represent this as
Gaussian noise ξ(t) with intensity D added to the first equations of each neuron.

Switchings between coexisting γpop- and β-modes
Let us choose the parameters to be in the region where γpop and β oscillations

coexist (point A in Fig. 4). In the noiseless case, with the applied initial conditions,
the resulting output oscillations is a β rhythm. This corresponds to a sharp peak
in the power spectrum at fβ = 17Hz. With noise, an additional peak appears at
fγ = 34Hz. With increasing noise, the peak at fβ becomes broader and smaller
in amplitude.

Aa a quantitative measure of coherence of switching events between two iden-
tified rhythms we use the so-called regularity coefficient which can be calculated
as [12]:

R =< τ > /
√

< τ2 > − < τ >2, (20)

where τ is specified as the interspike interval. The time averaged duration identifies
the mean period and, hence, the mean frequency < f >= 1/ < τ > of the noise-
activated oscillations.

0.1 1.0
D

1.00

1.20

1.40

1.60

R

Figure 5: Regularity coefficient R calculated from the interspike intervals. (gahp =
1.25 mS/cm2, gee = 0.05 mS/cm2).
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The spike train provides an efficient way to code a sequence of action potentials
with nearly the same shape since the most important information in neuronal
systems is widely believed to be coded in the time sequence of action potential
generation [20]. The spike train is a binary time series with a value 1 at the time
of action potential generations and 0 at other times. We analyzed the coherence
properties for such binary spike trains in the presence of noise. The results of a
calculation of the regularity coefficient (20) as a function of noise intensity are
shown in Fig. 5. The curve is seen to display a maximum for noise intensities
around D = 0.4. For weak noise, the contribution of γpop to the whole spike
train is small. At the optimal noise intensity β and γpop contribute equally to the
spiking train. Strong noise destroys the β rhythm, and the regularity decreases.
This represents an example of coherence resonance in the noise-induced switching
between different modes of the neural system.

Hopping between γ and β regimes
In the diagram presented in Fig. 4, regions of γ and β rhythms are sepa-

rated by the region of high-periodic solutions. Fixing the parameters at the point
B (Fig. 4), when adding noise we observe a direct transition between the main
rhythms (Fig. 6).
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Figure 6: Switching process between γ and β rhythms for gahp = 0.5 mS/cm2 and
gee = 0.2 mS/cm2. With increasing noise amplitude: D = 0.2 (top trace), 0.8
(middle trace), and 1.5 (bottom trace).

Figure 6 clearly shows how the residence time in the β regime now grows with
increasing noise intensity. Our measure of coherence calculated over the interspike
intervals indicates a well-pronounced maximum at some optimal noise intensity at
which β and γ spike trains alternate in a regular way (Fig. 7). Here, we observe
another example of regularized hopping events induced by applied noise, but now
with one of the involved states being unstable for the considered parameters.

Onset of spiking dynamics
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Figure 7: Coherence dynamics of interspike intervals in the Kopell model for
gahp = 0.5 mS/cm2 and gee = 0.2 mS/cm2. As before, D represents the noise
amplitude.
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Figure 8: Regularity for (a) gahp = 2.0 mS/cm2, gee = 0.0 mS/cm2 and (b)
gahp = 2.0 mS/cm2, gee = 0.2 mS/cm2. Note, how the two peaks observed in (a)
are closer to one another in (b).
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Let us hereafter see how noise can cause firing events in this local network. (Pa-
rameter values corresponding to point C in Fig. 4). It is known that the behavior
of spike trains can exhibit coherence resonance at an optimal noise intensity, as
described for a single Hodgkin-Huxley model by Lee et al. [22]. In this case, noise
affects the dynamics of the system in two ways: (i) Increasing the noise intensity
decreases the activation time so that the contribution of the spiking dynamics
increases. This enhances the regularization of spiking dynamics of the membrane
potential. (ii) Noise also produces amplitude and phase fluctuations of the firing
dynamics, destroying the periodicity in spiking events. The competition of these
two mechanisms produces the phenomenon of coherence resonance, i.e. a maximal
degree of coherence for an optimal noise level. This phenomenon is responsible for
the first peak of coherence for E1 (Fig. 8). With vanishing connection between
the excitatory cells (gee = 0.0), E2 demonstrates coherence of spiking events at
a higher noise intensity because of its different internal parameters. Due to in-
hibitory synapses (controlled directly in the Kopell model by varying gii and gie),
the first neuron adjusts its spiking behavior with respect to another neuron and
demonstrates a secondary coherence resonance at higher noise intensity (Fig. 8a).
When the E1–E2 connection is introduced (gee = 0.2mS/cm2), the two peaks ap-
proach one another and the excitable units demonstrate a well-pronounced peak
of coherence at the same noise intensity. This is illustrated in Fig. 8b. Because of
the synchronization effects, the maximal value of R is higher than in the previous
case [23].

4 Noise-induced rhythms

Let us hereafter focus on noise-induced rather than on noise-activated oscillatory
modes. This implies that we focus on time scales that are generated and controlled
by noise and do not exist in the deterministic case. We provide experimental ob-
servation of such multimode behavior and investigate the conditions of generation
and entrainment of the specified modes.

The purpose of this section is to describe the two-mode stochastic behavior
of an electronic system that has been constructed as a hard-wired version of the
simplest breathing rhythm generator for a snail (Fig. 9) [24]. A single monovibrator
circuit [25], being the functional unit in our electronic experiment, captures the
essential aspects of excitable systems generating a single electric impulse whenever
the input voltage exceeds the threshold level. The implementation of interacting
excitable units shown in Fig. 10a contains self- and mutually inhibitory coupling
chains that can increase the threshold voltages of the first (Vth1) and second (Vth2)
units. Each coupling chain contains a rectifier and a low-pass filter with coupling
strength gij and time constant τij , where i, j denote the unit numbers. Note that
the self-inhibitory time constants were chosen to be equal and to be greater than
the mutually inhibitory time constants, i.e., τ11 = τ22 > τ12 = τ21.

With a small noise intensity D (which is the same for the two units), both
excitable units keep silent most of the time, and their threshold voltages remain
equal (Vth1 ≈ Vth2). For intermediate noise levels, the coupling influence on the
threshold voltages becomes significant. At the same time, since mutual inhibition
makes the in-phase regime unstable, one of the two units gets the upper hand with
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Figure 9: Schematic presentation of a breathing rhythm generator for a snail.
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Figure 10: (a) Two monovibrators with delayed inhibitory couplings imitate the
simple neural circuit. ξ1,2(t) represents external noise generator; (b) Stochastic
spike trains generated by the first and second excitable units. Antiphase behavior
is indicated on the average.
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respect to its ability to suppress the firings of the other. However, with intensive
firing, the slow self-inhibitory chain with rate τ11 (or τ22) comes into operation
and suppresses the activity of the stronger unit. This creates better conditions for
excitation of the other unit, and the process continues in an alternating manner,
producing a behavior with time-varying firing rates for the two excitable units
(Fig. 10b).

In this operating regime, two peaks in the power spectrum are clearly distin-
guished (Fig. 11a). The high frequency peak corresponds to noise-induced oscilla-
tions in the single system while the low frequency peak reveals a new noise-induced
oscillatory mode. Hence, the system of coupled excitable units generates a new
oscillatory mode that is characterized by the values of τij and by the relation be-
tween the noise intensity and the initial threshold voltages (Vth1,Vth2). Figure 11b
demonstrates how the frequencies of these oscillations (open circles) depend on the
noise intensity. Inspection of the figure clearly shows that with increasing noise
strength, both frequencies grow (i.e., they are noise-controlled), but the growth
rates are different (i.e., they operate independently of each other). For strong
noise, an excitable system can be immediately pushed out from the equilibrium
state in spite of the threshold voltage. The low frequency peak in the power
spectrum disappears, and the additional time scale no longer exists.
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Figure 11: Two-mode dynamics in the excitable system presented in Fig. 10a. (a)
Power spectrum with well-pronounced peaks (D = 0.34V 2) and (b) peak frequen-
cies (open circles) and measure of regularity R (filled circles) vs. noise intensity
D.

Figure 11b illustrates how the output regularity R (filled circles) is suddenly
increased when low frequency oscillations appear while the peak at the noise-
induced eigenfrequency f2 becomes washed out because of the threshold modula-
tion. Hence, arising due to interaction between excitable units, the low frequency
oscillatory mode is controlled by noise via the effect of coherence resonance that
brings ordering to the whole system.
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5 Discussion

We considered noise-activated and noise-induced rhythms in models representing
three different neural systems: (i) a single-neuron model of a peripheral pattern
generator (a mammalian cold receptor), (ii) a small neural network (the Kopell
model) that can account for the coexistence of beta and gamma rhythms in the
brain, and (iii) a coupled monovibrator system that can serve as a model of a simple
breathing rhythm generator. Our results indicate that the interaction between
stochastic phenomena and complex deterministic dynamics may lead to a variety
of different phenomena of importance for neural rhythm generation.

The single neuron model mimics the discharge pattern of peripheral cold recep-
tors where impulse generation is determined by slow-wave oscillations which trigger
one or more impulses during their depolarizing phases. This holds true for both
deterministic and stochastic simulations with the exception that noise can induce
spiking as well as skipping around the onset of period-one activity. In the regular
bursting range noise does not produce any qualitative effects on the pattern but
mainly smoothens the deterministically abrupt transitions. In the chaotic regime
noise destroys the fine structure of the bifurcations. Thus, noise is assumed to
play an essential role in sensory neurons: spike generation is clearly phase-locked
to the underlying oscillations but noise determines the threshold crossings and
hence the times at which spikes are generated. In addition to serving as cellular
substates for synchronization in neuronal networks, subthreshold oscillations can
also serve as cellular substates for a sensitive and differential neuromodulatory
control based on the intrinsic oscillatory dynamics as optimized by naturally oc-
curring noise sources. Further studies on subthreshold oscillating neurons should
encompass the interesting neuromodulatory and encoding properties which arise
from cooperative effects of oscillations with noise.

The neuronal network model also displays spiking patterns that are modified in
an essential manner by the presence of noise. Especially in the area with coexisting
solutions, noise causes the network to jump from one state to the other. There is
a sharp transition between the oscillatory mode and a hopping state between the
coexisting solutions, and this transition is controlled by the noise intensity. The
output signal demonstrates quite “regular” switchings for a certain noise inten-
sity. Moreover, noise can initiate switchings in the region where the main beta
and gamma oscillations are separated by high-periodic solutions in the parameter
space. In this case, we again observe an optimal noise intensity at which the jump-
ing behavior becomes coherent. A particularly interesting finding is that, due to
synaptic inhibitory interaction, the excitatory cells can demonstrate double coher-
ence resonance [26]. With the introduction of a coupling between these neurons,
the two peaks of regularity merge together, giving rise to further gain of regularity
by virtue of synchronization.

We also showed that a simple system of coupled excitable functional units can
generate a few oscillatory modes that are induced and controlled by noise [27]. Pos-
sible advantages of multimode dynamics may include: (i) Increased sensitivity via
coherence resonance. We have found multiple coherence resonance phenomenon
related to different frequency entrainments and to the appearance of additional
time scales. (ii) Expanded flexibility. The presence and interaction of two distinct
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oscillatory modes enrich the dynamical patterns. The electronic approach involv-
ing excitable stochastic units with self- and mutually inhibitory couplings can be
applied to simulate neuron systems with a priori given phase relations.
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