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The purpose of this paper is to study the special forms of multimode dynamics that one can observe
in systems with resource-mediated coupling, i.e., systems of self-sustained oscillators in which the
coupling takes place via the distribution of primary resources that controls the oscillatory state of
the individual unit. With this coupling, a spatially inhomogenous state with mixed high and low-
amplitude oscillations in the individual units can arise. To examine generic phenomena associated
with this type of interaction we consider a chain of resistively coupled electronic oscillators con-
nected to a common power supply. The two-oscillator system displays antiphase synchronization,
and it is interesting to note that two-mode oscillations continue to exist outside of the parameter
range in which oscillations occur for the individual unit. At low coupling strengths, the multi-
oscillator system shows high dimensional quasiperiodicity with little tendency for synchronization.
At higher coupling strengths, one typically observes spatial clustering involving a few oscillating
units. We describe three different scenarios according to which the cluster can slide along the chain
as the bias voltage changes. © 2008 American Institute of Physics. �DOI: 10.1063/1.2805194�

Systems of interacting nonlinear oscillators play an im-
portant role in many areas of science and technology. A
rat kidney, for instance, contains of the order of 30 000
nephrons, each of which tends to display large amplitude
oscillations in the regulation of its incoming blood flow.
The arteriolar blood pressure controls the oscillatory
state of the individual nephron. At the same time, the
nephrons interact via the displacement of blood from one
nephron to its neighbors produced by this oscillatory
regulation. We refer to such structures, in which the os-
cillatory dynamics of the individual unit can no longer be
separated from the coupling among the units, as a system
with resource-mediated coupling. To examine some of the
generic aspects of this type of system, the paper considers
a chain of resistively coupled electronic oscillators shar-
ing a common power supply. For low coupling strengths,
the system tends to produce multimode dynamics in the
form of high-dimensional quasiperiodicity with little ten-
dency for synchronization. At higher coupling strengths
the resource distributed chain displays spatial clustering
involving a small number of oscillatory units. In all cases
the distribution of individual amplitudes is highly inho-
mogeneous, showing an interesting example of spatiotem-
poral mixed-mode oscillations. We study the mechanisms
by which this type of cluster slides along the chain as the
external bias voltage is changed.

I. INTRODUCTION

Initiated by the pioneering work of Winfree,1

Kuramoto,2 and Kaneko,3 the temporal and spatial phenom-
ena that one can observe in systems with large numbers of
coupled nonlinear oscillators have attracted an ever growing
interest, both from a more mathematical point of view4–6 and
in view of their relevance to the functioning of various
physical, chemical, and biological systems.7–9 Traditionally
one has considered either lattices of locally coupled
oscillators4,10,11 with nearest-neighbor interaction or en-
sembles of globally coupled oscillators12–14 with all-to-all in-
teraction. More recently, the concepts of small-world and of
scale-free systems have attracted considerable interest.15,16

Depending on the boundary conditions, locally coupled
systems usually produce standing or traveling waves, includ-
ing various forms of spatio-temporal chaos. In large en-
sembles of globally coupled oscillators, the multimode dy-
namics is often suppressed by the tendency for the oscillators
to entrain in states of either global �full� or local �cluster�
synchronization. A somewhat related approach, initiated by
Rössler,17 consists of the systematic development of multi-
mode systems with chaotic dynamics of increasing dimen-
sion. This approach may also have interesting applications to
a variety of chemical, ecological, and biological systems.18,19

The classical synchronization concept20 considers the in-
teraction of two or more oscillators, each with their own
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sources of energy, and with the coupling being responsible
for the frequency entrainment and mutual amplitude adjust-
ments. For different types of coupling structures �local, glo-
bal, small-world, etc.�, the mathematical description assumes
that the nonlinear properties of the individual functional unit
�i.e., its natural frequency and/or its resistance to perturba-
tions� are controlled by the unit’s own parameters while the
interaction is specified through a separate set of parameters
characterizing the structure and strengths of the coupling.
Hence, one can distinguish the natural modes of the indi-
vidual oscillators from the properties of the coupling net-
work. Moreover, in most cases the supply of energy to main-
tain the oscillatory states in the dissipative system is not
explicitly represented. To study the effects of synchroniza-
tion in ensembles of self-sustained units, it is common to use
so-called phase oscillators.21 Note, however, that this ap-
proach cannot be applied in situations where, as in our
model, the amplitude variation from unit to unit is large and
plays a considerable role in their frequency and phase
entrainment.

There are many examples of multimode systems that are
composed of a set of individual oscillators connected via a
resource distribution network. In such systems, a number of
spatially localized oscillatory modes is controlled by the
amount of resources �energy� delivered to each individual
oscillator and the supply of resources acts as a global control
parameter. It is interesting to note that in this case, the ini-
tially identical subunits show a tendency for desynchroniza-
tion, so-called coupling-induced inhomogeneity, combined
with a spatial localization of subunits in oscillatory
clusters.22 The resulting behavior consists of a number of
oscillatory modes with different amplitudes and frequencies
and can thus be classified as spatiotemporal mixed-mode os-
cillations. When the control parameters are varied, the spatial
location of the oscillatory cluster changes via different forms
of mutually related transitions in the individual units.

In the present paper we investigate the above form of
multimode dynamics emphasizing an analysis of the under-
lying nonlinear mechanisms. Having described the individual
one-degree-of-freedom oscillator and its electronic imple-
mentation, we first investigate how the dynamics of this os-
cillator is controlled by the power supply. We then consider
the main features of the two-mode system to show how com-
petition for energy brings subunits into a state of antiphase
synchronization. Finally, we describe the multimode behav-
ior in a large ensemble of oscillators connected via a linear
energy distribution network, and explain the underlying non-
linear mechanisms.

II. INDIVIDUAL OSCILLATOR

Let us first consider some of the main features of the
individual oscillator. As illustrated in Fig. 1�a� this is an elec-
tronic resonance circuit with a tunnel diode D in parallel
with capacitor. A circuit of this type is commonly used as
microwave generator. L and C denote the inductance and
capacitance, respectively, and R0 is the series resistance. The
bias voltage Eb plays the role of energy supply for our oscil-
lator system. In a certain range of Eb, self-sustained oscilla-
tions may arise in the system by virtue of the negative dif-

ferential resistance associated with the N-shaped current-
voltage characteristics of the tunnel diode. The period of
these oscillations is determined mainly by the capacitance C
and the inductance L.

Using Kirchhoff’s law for the circuit and introducing the
dimensionless time variable �= t /R*C �R*=1 �� we can
write the governing equations for the resonance circuit in
dimensionless form,

ẋ = y − f�x�, �ẏ = E − yR − x . �1�

Here, x and y represent, respectively, the voltage across the
diode and the current through the inductor. E and R are di-
mensionless representations of the battery voltage Eb and the
series resistance R0, and �=L /R*

2C is a scaling factor that
separates the fast and slow dynamics of the oscillator. In the
following, �=0.05. The current-voltage characteristics of the
tunnel diode f�x� is assumed to be of cubic shape with a
nonlinearity of the form,

f�x� = 20x − 5x2 + x3/3. �2�

With these equations, our 2D oscillator is similar to the
FitzHugh-Nagumo model, often used as a simple example of
a nerve model.23 However, the choice of control parameters
is different. Figure 1�b� shows the regions of distinct operat-
ing conditions with the insets illustrating the corresponding
locations of the null clines for the system. Note that the x
null cline coincides with f�x� while the y null cline, defined
by y= �E−x� /R and sometimes called the load line, is a lin-
ear function with slope 1 /R.

Let us first consider the behavior for small values of R.
In this regime, intersection of the null clines may occur out-
side of the interval with negative slope of f�x� �inset 1�, i.e.,
both for small and for large values of E there is a single,
stable equilibrium point, or the intersection may take place in
the region of negative slope for the x null cline �inset 2�.

For sufficiently small values of �, intersection of the null
clines at the local maximum or minimum of f�x� determines
the points of Andronov-Hopf bifurcation. Such bifurcations
occur at the lines labelled Lh1 and Lh2. Approaching these

FIG. 1. Electronic oscillator with one degree of freedom. �a� Equivalent
circuit diagram. �b� Bifurcation diagram for the model �1� at �=0.1. Fully
drawn lines represent Andronov-Hopf bifurcations, and dotted curves denote
transformations of the equilibrium point from node to focus. Insets 1–5
show the location of the null clines at the points of operation labelled 1–5 in
�b�, where the filled and open circles denote the stable and unstable equilib-
rium points, respectively. The gray shaded triangle area corresponds to the
region of self-sustained dynamics �the existence of a stable periodic orbit�.
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lines from both sides, the equilibrium point transforms from
a node to a focus at the dashed lines Lfn. Within the gray area
labeled 2 there is a single unstable equilibrium point at the
segment of f�x� with negative slope. This is the region of
self-sustained oscillations, and the corresponding limit cycle
trajectory is schematically depicted in the inset 2.

At large values of R, when the slope of the y null cline is
small, there are three points of intersection with the cubic x
null cline �the area and inset labelled 3�. This implies the
presence of two stable and one unstable equilibrium points.
Hence, the system is bistable and does not show self-
sustained dynamics. When one approaches this area from
small or large E values, two consecutive events take place.
The first is the appearance of a pair of unstable points at the
line of saddle-node bifurcation Lssn. One of these points is a
saddle while the other is an unstable node. The second event
is that the unstable node becomes a focus on the dashed line,
undergoes an inverse Andronov-Hopf bifurcation, and then
becomes a stable node at the second dashed line.

At intermediate values 0.2�R�0.4 the two null clines
have approximately equal slope in the vicinity of their inter-
section and the area between the bifurcation lines shrinks.
The enlargement shown in Fig. 1�b� reveals the details and
illustrates the saddle-saddle-node bifurcation curve 4 as well
as codimension-two bifurcation 5 when �i� the y null cline

crosses through the center of the cubic x null cline and �ii�
the slopes of both null clines at this point are equal.

To summarize, the main dynamical regimes of the indi-
vidual oscillator �1� are the excitable regime 1 �and 1� which
is symmetric to 1 with respect to the center of the cubic
function�, the region of self-sustained dynamics 2, and the
bistable regime 3. Note that the region of self-sustained os-
cillatory behavior existing at low values of R is limited. For
a given value of R, oscillations do not arise neither at too
high nor at too low values of the supplied energy �as repre-
sented by the battery voltage E�.

III. DYNAMICAL PATTERNS
IN THE TWO-MODE SYSTEM

Let us examine the dynamics of two coupled units. Fig-
ure 2 shows the circuit diagram for two oscillators that are
connected to the battery via the common resistor rc. The
corresponding model equations can be easily obtained by
copying Eq. �1� for the second system �denoting the two
oscillators with subscripts 1 and 2� and accounting for the
voltage drop across the resistor rc,

ẋ1,2 = y1,2 − f�x1,2� ,

�3�
�1,2ẏ1,2 = �E − r�y1 + y2�� − R1,2y1,2 − x1,2.

An overview of the dynamical regimes for two identical
diode oscillators on the �r ,E� parameter plane is presented in
Fig. 3�a�. Here, the vertical direction represents variation of
the power supply while the horizontal direction corresponds
to changes of the coupling strength. Typical behaviors are
depicted in the diagram insets in the form of sketches of
�x1 ,x2� phase projections. The main feature of the observed
behaviors is an antiphase locking pattern illustrated by a
backwards sloping figure-8. In several regions, this antiphase
regime coexists with one or two stable equilibrium points.
The appearance of antiphase oscillations can be explained in
terms of the structure of the equations: One can rearrange
Eqs. �3� by grouping terms with y1 or y2. In this way, �R1,2

+r� becomes equivalent to the resistance of the individual
circuit in Fig. 1, and the coupling term becomes −ry2,1. Thus,
increasing y1 causes a drop of y2 and vice versa. From a

FIG. 2. Circuit diagram for two oscillators coupled via a shared power
supply �battery�. The coupling strength is controlled by the resistor rc. The
interesting feature of this diagram is that the coupling takes place via the
network that controls the dynamic state of the individual oscillator. In our
dimensionless equations, rc and UR are represented by r and U, respectively.

FIG. 3. Overview of dynamical regimes of two coupled
oscillators. �a� Sketch of the bifurcation diagram on the
�r ,E� parameter plane for identical oscillators. �b� Dia-
gram on the �� ,r� parameter plane with the frequency
mismatch �=�1 /�2. Insets b1–b3 show 3D phase pro-
jections for the regions labelled b1–b3 in �b�.
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more generic point of view, we consider a system with com-
petitive coupling. This means that increasing the current to
one oscillator reduces the current to the other and that each
of the interacting units tries to prevent the other unit from
following its motion. In biological systems, examples of this
type of coupling may be found, for instance, for competing
bacterial populations9 or for tubular pressure oscillations of
paired nephrons.24

Note that, according to Eq. �3�, increasing r acts for each
unit in the same way as increasing R in Eq. �1�. Hence, the
bifurcation diagram contains two crossing lines of
Andronov-Hopf bifurcation similar to those in Fig. 1�b�.
However, the area of self-sustained dynamics �indicated in
gray� is no longer bounded by these lines. Qualitatively this
can be explained as follows. When an individual unit is in an
oscillatory state, the current through the inductor changes its
direction twice per period. When two circuits are coupled as
shown in Fig. 2, current will be displaced from one circuit to
the other and, in spite of the competitive character of the
coupling, the interacting units thus help one another to main-
tain the oscillations. This is possible only for antiphase lock-
ing, where the currents in the coupled units have opposite
phase.

The dynamical pattern described above is preserved in
some range of the mismatch parameter. Figure 3�b� illus-
trates synchronous and nonsynchronous regimes on the pa-
rameter plane of the frequency mismatch �=�2 /�1 and the
coupling parameter r. The Arnol’d tongue for antiphase lock-
ing �regime b1� emanates from the point �=1.0,r=0. In-
creasing r strengthens the coupling and, thus, the synchroni-
zation region becomes wider. Above r�0.05, the
asynchronous oscillators do not demonstrate self-sustained
dynamics. Inside the synchronization region, however, self-
sustained dynamics is maintained for larger values of r. Note
that before the asynchronous oscillations b2 die, they pass
through a chaotic regime labeled as b3. This occurs when the
units force each other close to the Andronov-Hopf bifurca-
tion where the divergence of the phase flow is high.25,26 This
phenomenon is related to the existence of an area of canard
explosion.27,28

Let us summarize our findings concerning the behavior
of the two-oscillator system: �i� sharing the common power
supply via a resistor, identical coupled circuits tend to attain
antiphase synchronization; �ii� the antiphase locking pattern
may maintain self-sustained dynamics even outside of the
corresponding parameter range for the individual system;
and �iii� this effect is preserved in the presence of a mis-
match of reasonable size between the coupled units.

IV. MULTIMODE NETWORK

To build a multimode system of functional units �1� we
connect the oscillators as shown in Fig. 4. We have previ-
ously introduced such a coupling structure as a simple imple-
mentation of a system with resource mediated coupling.22

Capacitors Cz are introduced to account for possible accumu-
lation of energy by an individual oscillator while the resistors
rc are responsible for the finite replenishment rate and for
transmission losses. Values of Rj, Lj, Cj are assumed to be
the same for all units. Now the jth individual oscillator is fed

from the corresponding branching point with voltage Uj. To
account for this coupling structure in a dimensionless model
we introduce the new variable zj defined for each branching
point and representing the corresponding voltage Uj. The
modified equations for each oscillator then reads

�zj̇ = �zj−1 − zj�/r + �zj+1 − zj�/r − yj, j = 1, . . . ,N ,

�4�
ẋj = yj − f�xj�, �ẏ j = zj − yjR − xj ,

where �=Cz /Cj. j represents the number of the oscillator,
and N is the total number of units. z0 corresponds to the
battery voltage E. The free end of the chain is modeled by
the boundary condition zN+1=zN. We assume that Cz�Cj so
that ��1 and zj quickly follows variations of xj and yj.

Organized in the chain �4�, the units become globally
coupled via variations of the zj variables. There is a gradual
decrease of the mean value of zj along the chain because of
the voltage drop across each coupling resistor r. Note that the
current along the chain splits into two currents at each unit.
Thus the current decreases along the chain, and the drop of zj

from unit to unit becomes smaller and smaller. In our origi-
nal model of a chain of microbiological population pools,
this gradual decrease of the “energy” available to the indi-
vidual oscillator could be compensated by additional sup-
plies of substrate to the various pools. In this way the oscil-
lations could be maintained all the way along the chain. A
similar supplementary feed structure appears less natural for
a chain of electronic oscillators.

In the phase space of the whole system, the variation of
the mean value of zj affects the stability of the global equi-
librium state that can be defined from

ẋj = 0, ẏ j = 0, ż j = 0, j = 1, . . . ,N .

We have previously shown22 that, under variation of E, a
sequence of Andronov-Hopf bifurcations occurs in the phase
subspaces of each array unit. For a given value of E there is
some number of oscillators �generally less than N� with un-
stable equilibrium points and, thus, show self-sustained dy-
namics. This leads to the formation of spatially localized
multimode behavior, referred as an oscillatory cluster, that
can slide along the array with variations of E.

Below we consider an array of ten units and focus on �i�
the frequency patterns associated with multimode oscillatory

FIG. 4. Circuit diagram for an array of oscillators with the geometry of a
linear power distribution chain.
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clusters and �ii� the transition scenarios that can be observed
when a cluster changes its position along the chain.

A. Weak coupling

The choice of r=0.05, �=0.1, �=0.001, and R=0.01
provides a weak interaction between the units of the array.
The multimode oscillatory patterns that arise in the chain
will be characterized by the ten largest Lyapunov exponents
�i, the corresponding Lyapunov dimension DL, and the indi-
vidual frequencies �f	 j, calculated from mean return time to
Poincaré sections defined by the condition xj =5.0 in Fig. 5.

Note that the Lyapunov exponents �i have the subscript
i=1, . . . ,3N. Formally it is not possible for a system with
global coupling to establish a direct relation between �i and
specific oscillator units. However, it is possible to associate
each zero-valued Lyapunov exponent with one of the indi-
vidual oscillators. In this way, we discuss the plots for the N
largest Lyapunov exponents �i and for the N frequencies �f	 j

together.
As the figure shows, increasing E from 4.3 to 5.2 is

associated with the Lyapunov exponents one by one ap-
proaching zero from below �top left panel in Fig. 5�. The
Lyapunov dimension rises up to DL=9.0. The corresponding
frequencies appear and rise gradually without visible locking
regions �bottom left panel�. This indicates the formation of
multimode behavior represented in phase space by a high-
dimensional torus with a number of independent frequencies
equal to the number of vanishing Lyapunov exponents. A
detailed inspection of the figures for E� �6.0;6.8� shows the
presence of small regions of partial resonances and corre-
sponding weakly negative Lyapunov exponents �insets a and
b�. The individual frequencies are close enough to one an-
other that the interaction via the power distribution gives rise
to locking patterns.

Within the range of E shown in inset c we cannot dis-
tinguish any partial resonances. If one assumes the presence

of higher-order resonances such as p�f j	=q��f j+k	, j+k�N�,
where p and q are integers, then the higher frequency should
rise faster than the other. This appears not to be the case in
Fig. 5. We can conclude that for certain sets of parameters
the system under consideration shows oscillations with up to
nine independent frequencies, or the equivalent of a nine-
dimensional torus. In the inset c, sharp steps are clearly dis-
tinguished in the frequency curves. We leave the explanation
of this behavior till the last section of the paper.

B. Strong coupling

With increasing r the voltage drop between the branch-
ing points increases, and only a few oscillators show self-
sustained dynamics. At r=0.274 the oscillatory cluster
shrinks to only two units, and the values of E must be con-
siderably larger to observe different cluster locations along
the chain.

Figure 6 shows the location of the cluster �middle panel�,
the frequencies of the oscillating units �top panel� and the
values of the largest Lyapunov exponents �bottom panel�.
For most values of E the oscillatory cluster contains two
units. At E=10.10, self-sustained dynamics are observed in
units 1 and 2. The heavy black circles in the middle panel
indicate the particular parameter values used for the phase
projections in the respective insets. With increasing E, se-
quential changes of cluster location to positions 2-3, 3-4,
4-5-6, and 7-8-9-10 are observed. In the following we con-
sider typical regimes in the center range of cluster stability
�with respect to values of E� together with different scenarios
observed for the shift in cluster position.

Intracluster synchronization
Figure 6 clearly demonstrates the region of frequency

locking for each cluster location. This region may also be
diagnosed by the characteristic gap in the plot for Lyapunov
exponents. Examples of phase projections are shown in in-
sets b and c.

FIG. 5. Formation of multifrequency regimes in a
power sharing array of ten oscillators. Left panels show
plots of Lyapunov exponents �top�, the corresponding
changes in Lyapunov dimension DL �middle�, and plots
of frequencies for the various oscillators �bottom�.
Right panels represent enlargements of the areas labeled
a, b, and c. Calculations were performed for �=0.1, r
=0.05, �=0.001, and R=0.001.
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Figure 7 shows enlargements of the dependences of the
two largest Lyapunov exponents � j and of the phase differ-
ence 	
 on E. As one can see, the value of 	
 varies ap-
proximately from � /2 to 3� /2. This means that the observed
synchronous regime is closer to antiphase than to in-phase
synchronization. A pure antiphase locking pattern with 	

=� is observed for E�10.314. Note that this value of E does
not correspond precisely to the maximal stability of the syn-
chronous regime �which occurs at the minimal value of the
negative Lyapunov exponent or at E�10.311�. This obser-
vation can be explained by the results described in Sec. III.
Namely, when the cluster consists of only two self-sustained
units, the remaining oscillators, that are in the damped state,
can be considered as passive elements and, thus, replaced by
equivalent resistors. Hence, the behavior of the ten-unit array
in this regime is similar to the behavior of two coupled

oscillators in the antiphase locking regime. However, such an
equivalent system is generally not as symmetric as the sys-
tem considered in Sec. III. This explains the observed shift in
the location of purely antiphase regime with respect to the
local minimum of the Lyapunov exponents.

Change of cluster location
We have observed three different mechanisms by which

the synchronized cluster can shift its position along the
chain.

Scenario A: In the range of E� �10.05;10.10� the oscil-
latory cluster changes its location from units 1-2 to units 2-3
�Fig. 6�. This occurs in two steps: �i� unit 1 ceases to oscillate
at E=10.0658 and �ii� unit 3 starts to oscillate at E
=10.0929. In the interval between the two values of E the
cluster consists of only a single oscillator. Figure 8 �left
panel� shows the detailed plot of the largest Lyapunov expo-
nents. The dashed circles focus on the most interesting aspect
of the considered transition. Namely, both extinction of os-
cillations in the first unit, and the onset of oscillations in the
third unit are accompanied by bursts of the Lyapunov expo-
nents to positive values, indicating a narrow chaotic regime.
Inspection of phase projections helps to reveal the respon-
sible mechanism. There are no particularly interesting fea-
tures of the phase projection on the �x2 ,y2� plane. However,
the phase plot on the �x1 ,y1� plane shows chaotic behavior
�Fig. 8 �right panel��. An enlargement of the area close to the
equilibrium state reveals the characteristic bundle of trajec-
tories. Thus, the periodic forcing by the second unit drives
the first unit across the Andronov-Hopf bifurcation point. As
already mentioned, our model �1� is similar to the well-
known FitzHugh-Nagumo model that demonstrates the spe-
cific feature known as a canard explosion near the supercriti-
cal Andronov-Hopf bifurcation.27,28 This is related to a local
but strong divergence of the trajectories. Note that to observe
the canard explosion the time separation parameter � should
be small. When forced by external regular or noisy signals, a

FIG. 6. �Color online� Variations of the oscillatory re-
gimes with the bias voltage E at strong coupling r
=0.274. The middle panel �in gray� shows the location
of a two-mode oscillatory cluster. The top and bottom
panels show the corresponding changes in frequencies
and Lyapunov exponents, respectively. The insets �a�–
�e� show the phase projection on the �xj ,xj+1� plane,
�j , j+1� is defined by the location of the corresponding
filled circle in the central panel. Other parameters are
fixed at �=0.1, �=0.001, and R=0.001.

FIG. 7. The top plot shows the phase difference 	
 vs the bias voltage E
across a tongue with antiphase synchronization. The bottom panel represents
the corresponding variations of the two largest Lyapunov exponents.
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system in the canard region is known to produce
chaos.25,26,29

Hence, the scenario A for changes of cluster location
includes two regions of chaotic behavior related to the ex-
tinction and to the onset of oscillations in edge units.

Scenario B: The above discussion suggests that the tran-
sition of any unit of the array through an Andronov-Hopf
bifurcation should be accompanied by the appearance of a
chaotic regime. However, this is not the case for the transi-
tion B �Fig. 6�. The plot for the largest Lyapunov exponents
�Fig. 9 �left panel�� shows that the second Lyapunov expo-
nent reaches zero at the single point E=10.2423. At this
point the oscillatory cluster abruptly changes its location.
Note that the shift of cluster position involves two different
events. First, the extinction of oscillations in the “tail” unit of
the cluster. Second, the onset of oscillations in the “head”
unit. When we observe both events at the same value of
parameter E the regime should be structurally unstable. The
diagram of dynamic regimes in Fig. 9 �right panel� clarifies
the situation. From the diagram one can see the disposition
of regions with different cluster locations. It is clearly seen
that the observed “jump” of the cluster according to the sce-
nario B is structurally stable but associated with a regime of
bistability where the different cluster locations at units 2-3
and 3-4 coexist. Similar but more narrow areas of bistability
can be found at the top and bottom of the diagram. They are
associated with transitions through cluster narrowing and
widening, respectively.

The key question is why such behavior patterns occur
while the individual unit does not show any bistability? As

shown in Sec. II, both the onset and the extinction of oscil-
lations in the model �1� are associated with a soft �or super-
critical� Andronov-Hopf bifurcation. To explain this we build
the bifurcation diagram on the �E ,y� parameter plane and
plot the mean value of y averaged over the period of oscil-
lations. Note that in terms of the original electronic circuit
�Fig. 1� the y variable describes the current through the in-
ductor L. As one can see, the onset of oscillations �Fig.
10�a�� causes a sharp drop in the mean consumed current �y	.
In turn, this drop in current consumption increases the volt-
age Uj in all branching points �Fig. 4�. Thus, if, for example,
the third unit enters the self-sustained regime, then the volt-
age increases on all units, including the third unit itself. In
this way, its operating point is shifted as if E was increased.
This causes the abrupt “jumps” to the regime of full-range
oscillations, skipping the chaotic regime discussed for the
scenario A. In Fig. 10�b� the described shift of the operating
point is schematically depicted with points labeled as 1
→1�. For the “tail” unit of the cluster, where the oscillations
die out, �y	 changes in a similar way: the transition causes a
drop of the mean consumed current that in turn “pushes” the
unit out of self-sustained regime. This transition is denoted
2→2�in Fig. 10�b�. The described mechanism also explains
the sharp steps in frequency curves observed in Fig. 5�c�.

Scenario C: The first two mechanisms for change of
cluster location can be realized in combination. Figure 11
represents the plot for the largest Lyapunov exponents in the
range of bias voltage E corresponding to the transition C in
Fig. 6. One can see that the fourth unit enters the self-

FIG. 8. Enlargement of part of the bot-
tom panel in Fig. 6 around the region
labeled A �left panel�, phase projection
on the �x1 ,y1� plane, and its enlarge-
ment �right panel�.

FIG. 9. �Color online� Abrupt change
of cluster location �transition B in Fig.
6�. Plot for the Lyapunov exponents
�1,2 shows the single point where �1

=�2=0 �left panel�. The diagram of re-
gimes on the �r ,E� plane shows the
stability of different regimes �right
panel�. The rectangle insets in the dia-
gram schematically show the first five
units where the self-sustained regime
is indicated by the gray shading.
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sustained regime according to scenario B at E=10.3471. At
larger E� �10.3699;10.3748� a chaotic regime appears that
is associated with extinction of the self-sustained regime in
the third unit.

V. CONCLUSIONS

Considering an array of resistively coupled electronic
oscillators we examined a particular form of multimode dy-
namics, referred to as spatial oscillator clustering. This type
of multimode dynamics can be observed in systems in which
the energy supply �or resource allocation� that controls the
dynamic state of the individual oscillator also provides the
mechanism of coupling among the oscillators. The result is a
spatially inhomogeneous state of self-sustained oscillations
involving a variable number of modes and shifting along the
system in dependence of the total supply of resources. We
analyzed the frequency pattern within such a cluster and out-
lined three possible scenarios of cluster displacement, i.e., of
spatial reorganization of the multimode behavior. Our main
findings can be summarized as follows:

• Sharing a common power supply via some resistor, two
identical coupled oscillator circuits tend to lock in an an-
tiphase mode that supports the self-sustained dynamics in
the whole system even outside the parameter range of os-
cillations for the individual system.

• A linear array of electronic oscillators shows spatially lo-
calized multimode dynamics in the form of an oscillatory
cluster. The voltage drop from one branching point to an-
other is responsible for the behavioral inhomogeneity of
the originally identical units and, hence, underlies the for-
mation of the oscillatory cluster.

• For weak coupling �small voltage drop from one branching
point to the next� quasiperiodic behavior with a variable
number of independent frequencies �each representing one
oscillatory mode� is found to be the characteristic operat-
ing regime. The numerical simulations show an interval of
the control parameters where an up to nine-mode quasi-
periodic regime is observed without pronounced tendency
for mode locking or torus destruction.

• At stronger coupling �strong voltage drop from one
branching point to the next� the cluster shrinks to a few
units �two- or three-mode operating regimes� and shows
several different scenarios for the cluster displacement un-
der variation of the power supply. These scenarios include
chaos development in the edge elements of the cluster as
well as coexistence of different spatial patterns �different
cluster locations�. We explain the formation of bistability
in terms of coupling-induced positive feedback and the
nonlinear nature of the mean current consumption by the
individual oscillatory unit.
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