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INTRODUCTION

The analysis of correlation functions plays a key
role in the studies of both stochastic (truly random) pro-
cesses and chaotic oscillations generated by determin-
istic dynamics of nonlinear systems. There are several
reasons for the importance of the correlation properties.
The decrease in the correlation functions down to zero
over long time intervals (splitting of correlations) is a
consequence of mixing. If the time interval between the
states of a system is rather long, they become statisti-
cally independent [1–5]. The ergodicity of a system fol-
lows from mixing. In addition, the splitting of correla-
tions evolving in chaotic dynamic systems is related to
instability of chaotic trajectories and entropy induced
by a system [1–7]. A one-to-one relationship between
the autocorrelation function of a process and its power
spectrum is expressed through the Wiener-Khintchine
transform. Power spectrum is an important characteris-
tic used in applications.

At present, spectral and correlation properties of
irregular oscillations in dynamic systems are still insuf-
ficiently studied in spite of their basic importance. It is
commonly accepted that the correlation function of a
chaotic system exponentially decays with a decrement
determined by the Kolmogorov entropy 

 

H

 

K

 

 [3]. The
Pesin theorem yields an upper estimate of entropy 

 

H

 

K

 

equal to a sum of the positive Lyapunov exponents [5,
7, 8]. However, the theoretical results are available only
for certain classes of discrete mixing-measure
mappings. They yield an exponential upper estimate for
the time decay of correlations [9, 10]. Sometimes,
the correlation decay rate is related to Lyapunov expo-
nents [11]. In other cases, it depends on the remaining
characteristics determined by the Frobenius–Perron
operator [12–15]. Even elementary mappings exhibit
deviations from the exponential behavior [12]. For flow
systems, theoretical estimates of the correlation decay
rate are absent [16]. There are virtually no studies on
numerical analysis of the correlation properties of
chaos in flow systems.

In experiments, we normally analyze the autocorre-
lation function (ACF) of a certain dynamic variable of
a system:
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where the angular brackets denote averaging over the
ensemble of realizations of process 

 

x

 

(

 

t

 

)

 

. Chaotic oscil-
lations can be treated as a stationary and ergodic pro-
cess, so that 
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, and the
ensemble averaging can be replaced by time averaging
over a single typical realization. It is convenient to nor-
malize the autocorrelation function by its maximum
value at 
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= 0: 
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Consider a few examples. Figure 1 shows normal-
ized ACF 

 

Ψ

 

(

 

m

 

)

 

 of dynamic variable 

 

x
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 of a two-
dimensional (2D) mapping represented as
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where 
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 is discrete time, 
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 = 
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 – 
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0

 

 is the difference
between time moments, and mod1 denotes retaining of
the fractional part. Toral diffeomorphism (2) represents
a classical example of the 

 

C

 

 Anosov systems [13].
Therefore, the theorem on the exponential estimate of
the correlation decay must be valid for mapping (2). It
is clearly seen from Fig. 1 that ACF 
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 decays more
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rapidly than 

 

exp(–
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m

 

|

 

H
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)

 

 (curve 
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), where Kolmogorov
entropy 

 

H

 

K

 

 strictly equals positive Lyapunov exponent

 

λ

 

+

 

. However, the correlation decay is not described by
an exponential function.

Another example is a one-dimensional (1D) stretch-
ing mapping given by

 

(3)

 

At 

 

K

 

 > 1, 1D noninvertible mapping (3) represents an
elementary model chaotic system, for which the mixing
property is proved [13, 18]. Using approximate analyt-
ical methods, it can be demonstrated that, for integer
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, the autocorrelation function of process 
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exponentially decays with a decrement equal to 
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,
which corresponds to the Kolmogorov entropy (the
positive Lyapunov exponent) [3]. Numerical calcula-
tions show that the exponential law 
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 is valid even for integer 
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 (Fig. 2a).
For noninteger 

 

K

 

 and, especially, for the values of 

 

K

 

close to unity, the ACF decay can substantially differ
from the exponential function (Fig. 2b).

The autocorrelation function oscillations (see, for
example, Fig. 2b) can be attributed to a certain period-
icity of the chaotic process. A partial periodicity yields
a periodic prefactor at the exponential.

x n 1+( ) Kx n( ), mod1.=

Finally, consider the mapping that demonstrates
chaotic intermittency in a certain range of parameter
values:

(4)

At α = 2.83, the system exhibits two chaotic attractors
that are symmetric with respect to the point x = 0. The
ACF curve, characterizing the correlation decay rate, is
bounded from above by the exponential function
exp(−|m|λ+) (Fig. 3a). If α = 2.84, we observe chaotic
switching between the merged attractors (chaos–chaos
intermittency [19]). Mean time T of stay at each of the
merged attractors represents the second characteristic
scale of mixing in addition to the first one related to λ+.
In this case (as well as in the case of the noise-induced
switching [20]), the ACF can be approximated by the
function

(5)

where a and b are constants. Figure 3b shows the corre-
sponding results.

There are numerous reasons for the complexity of
the ACF time dependence typical of the major part of
chaotic systems. Note the heterogeneity of the proper-
ties of local instability in the phase space leading (as

x n 1+( ) αx n( ) x3 n( )–( ) x2 n( )
10

-------------– 
  .exp=

Ψ m( ) a m λ+–( )exp b 2 m /T–( ),exp+=

1.0

0.5

0

–0.5
0 20 40 60 80 100

m

Ψ(m)

(b)

1.0

0.5

0

–0.5
0 2 4 6 8 10

(a)

Fig. 2. Normalized ACF of a chaotic sequence x(n) gener-
ated by mapping (3) at K = (a) 2 and (b) 1.1: (dots) calcula-
tion and (dashed line) exponential estimate exp(–|m|lnK). In
case (a), the presence of a low-intensity noise makes it pos-
sible to avoid periodicity related to round-off errors at cer-
tain integer values of K.
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Fig. 3. (Solid line) normalized ACF of chaotic sequence
x(n) generated by mapping (4) and (dashed line) its approx-
imation based on expression (5) at (a) α = 2.83 (in expres-
sion (5), b = 0) and (b) α = 2.84 (in expression (5), a = 3.5
and b = 6.5).
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was demonstrated in [3]) to a slow asymptotics of the
ACF, the existence of nearly periodic oscillations, and
the presence of the switching effects. All the features
above are characteristic of nonhyperbolic chaotic
attractors [21–23] representing the major part of cha-
otic attractors observed in the models of real dynamic
systems. Also, for almost hyperbolic attractors (such as
the Lorenz attractor [21, 24, 25]), the rate of splitting of
correlations depends, to a great extent, not only on the
rate of the exponential separation of trajectories.

In this work, we study the correlation and spectral
properties of chaotic oscillations for the main types of
chaotic attractors realized in autonomous differential
systems with a three-dimensional (3D) phase space.
The objects under study are classical models of nonlin-
ear dynamics such as Rössler oscillator [26], Lorenz
system [27], and a mathematical model of the Ani-
shchenko–Astakhov oscillator, representing a radio
device [19]. The purposes of this work are to determine
the features of chaotic dynamics determining the rate of
splitting of correlations and the width of the fundamen-
tal spectral line and to analyze the effect of noise on
spectral and correlation characteristics of chaos. Based
on the results of computer simulation, we demonstrate
the correspondence (in terms of the correlation proper-
ties) between various types of chaotic oscillations and
such basic models of stochastic processes as harmonic
noise and a telegraph signal.

1. HARMONIC NOISE 
AND A TELEGRAPH SIGNAL

The analysis of applied problems often involves
such models of random processes as noisy harmonic
oscillations and a telegraph signal. The former is used
to describe the effect of natural and technical fluctua-
tions on the spectral and correlation characteristics of
the output signal of quasi-harmonic self-sustained
oscillators [29–31]. A telegraph random process is a
model enabling one to describe statistical properties of
pulse random processes, for example, random switch-
ing in a bistable system in the presence of noise (the
Kramers problem, noise-induced switching of the
Schmitt trigger, etc. [31–33]). The results of the studies
of chaotic oscillations in 3D differential systems show
that one can use the aforementioned classical models of
random processes to describe spectral and correlation
properties of a certain class of chaotic systems. Below,
we demonstrate that the harmonic noise model describes
the correlation characteristics of spiral chaos well and
that the random telegraph signal model can be used to
characterize the statistical properties of switching attrac-
tors, such as attractors in the Lorenz system [27] and
Chua circuit [28].

Consider the main properties of the aforementioned
classical models of random processes.

Harmonic Noise 

Harmonic noise x(t) represents a stationary random
process with zero mean described by the oscillations
given by [29–31]

(6)

Here, R0 and ω0 are constant (mean) values of the oscil-
lation amplitude and frequency and ρ(t) and φ(t) are
random functions characterizing amplitude and phase
fluctuations, respectively. Assume that ρ(t) is a station-
ary process. The harmonic noise model implies that the
amplitude and phase fluctuations are slow compared to
cosω0t. The following simplifying assumptions are
most frequently used: (i) amplitude and phase fluctua-
tions are statistically independent and (ii) phase fluctu-
ations represent a Wiener process written as

(7)

where ξ(t) is the normalized Gaussian white noise
(〈ξ (t)〉 ≡ 0 and 〈ξ (t + τ)ξ(t)〉 = δ(τ)). Constant B is the
phase diffusion coefficient. Under these assumptions,
the ACF of process (6) is represented as [29–31]

(8)

where Kρ(τ) is the covariance function of reduced
amplitude fluctuations ρ(t).1 Power spectral density can
be obtained from expression (8) using the Wiener–
Khintchine transform.

The Generalized Telegraph Signal 

This stochastic process represents random switch-
ing between two possible states x(t) = ±a. There are two
main types of the telegraph process. The first one (a so-
called random telegraph signal) is characterized by the
Poisson distribution of switching moments tk . In the
stationary case, the mean frequency of switching is
constant. The Poisson distribution of tk results in the
exponential distribution of pulse duration θ:

(9)

where n1 is the mean switching frequency. The ACF of
such a process is written as [31, 34]

(10)

The other type of telegraph process (a quasi-random
telegraph signal) corresponds to random switching
between two states x(t) = ±a that can take place only at
discrete moments tn = nT0 + η, n = 1, 2, 3, …, where

1 The prefactor [1 + Kρ(τ)] is covariance function KA(τ) of ran-

dom amplitude A(t) = R0[1 + ρ(t)]. (It is convenient to use such a
representation below.)
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T0 = const and η is a random quantity uniformly distrib-
uted over the interval [0, T]. Let p and q be the proba-
bilities of the absence and presence of switching at a
current moment, respectively. Then, the ACF of such a
process is given by

(11)

In the special case when the probabilities are p = q =
1/2, the ACF exhibits a linear decrease with time
(Fig. 4):

(12)

2. CORRELATION AND SPECTRAL ANALYSIS
OF SPIRAL CHAOS

Spiral (or phase-coherent) attractors emerge in the
vicinity of the saddle–focus separatrix loop owing to
period-doubling bifurcations. They are classified as
chaotic attractors of the nonhyperbolic type [19, 35].
The power spectrum of spiral chaos exhibits a pro-
nounced peak at the center (mean) frequency. As a con-
sequence, the ACF envelope decays rather slowly,
which can be illustrated by such examples as spiral
attractors in the Rössler model [26], the Anishchenko–
Astakhov oscillator with inertial nonlinearity [19],
Chua circuit [28], etc. The corresponding self-sustained
oscillations resemble the dynamics of noisy periodic
oscillators (e.g., the Van der Pol oscillator). In particu-
lar, they exhibit a finite-width spectral line peaked at the
basic frequency [36] and the effects of forced and
mutual synchronization [37, 38]. From the physical
point of view, such chaotic attractors have the proper-
ties of a noisy limit cycle. However, the spiral attractors
are realized in deterministic systems (in the absence of
noise).

Consider spiral chaos in the Rössler system repre-
sented as

(13)

where ξ(t) is the normalized Gaussian source of the
δ-correlated noise with zero mean and D is the noise
intensity. To introduce instantaneous amplitude A(t)
and total instantaneous phase Φ(t) of chaotic oscilla-
tions corresponding to the spiral attractor of the Rössler
system, one can use the change of variables2 

(14)

2 This is possible owing to a virtually regular rotation of the XY tra-
jectory projection around the saddle–focus. Note that the saddle–
focus is close to the origin, so that one can neglect the constant
components of oscillations x(t) and y(t).

ψ τ( ) a2 n τ /T0–( ) p q–( )n 1–=

+ a2 τ /T0 n 1–( )–[ ] p q–( )n,

n 1–( )T0 τ nT0.<≤

ψ τ( ) a2 1 τ /T0–( ) at τ T0;<=

ψ τ( ) 0 at τ T0,<=

ẋ –y z– 2Dξ t( ), ẏ+ x αy,+= =

ż β z µ x+( ), α– β 0.2= = = , µ 6.5,=

x t( ) A t( ) Φ t( ), y t( )cos A t( ) Φ t( ).sin= =

With this change of variables, we can derive from
expressions (13) the following system of equations:

(15)

In the calculations, both equivalent systems (13) and
(15) are used.

Farmer [36] assumes that there exists a relationship
between the width of the fundamental spectral line and
ACF decay rate in the case of spiral chaos with phase
fluctuations. However, the author does not introduce
phase characteristics and performs no calculations sup-
porting the assumption. Simulations [39] show that the
Rössler system with developed spiral chaos exhibits a
virtually linear increase in the variance of the instanta-
neous phase with time both in the absence of noise
(D = 0) and at D ≠ 0. The variance of the total phase
equals the variance of its irregular component: φ(t) =

Φ(t) – ω0t, where ω0 = 〈 (t)〉  is the mean frequency of
chaotic oscillations. The linear growth of variance

(t) makes it possible to introduce the effective phase
diffusion coefficient:

(16)

In simulations, we calculate the normalized ACF
of chaotic oscillations Ψ(τ) in system (13). Using sys-
tem (15), covariance function KA(τ) of the amplitude
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Fig. 4. ACFs of a quasi-random telegraph signal at the prob-
abilities p = (1) 0.6, (2) 0.5, and (3) 0.3.
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and effective phase diffusion coefficient Beff are deter-
mined. The calculations of Ψ(τ) and KA(τ) involve time
averaging, whereas, in the calculations of Beff , we per-
form averaging over the ensemble of realizations [39].
Figure 5 shows calculated ACF Ψ(τ) (gray dots). In
both the absence and presence of noise (Figs. 5a and 5b,
respectively), the ACF of chaotic oscillations decays
virtually exponentially. At early moments (τ < 20), the
correlation decreases more rapidly (Fig. 5c) during a
certain interval.

Proceeding from expression (8), we approximate
the envelope of experimentally measured ACF Ψ(τ). To

this end, we substitute numerically calculated charac-
teristics Beff (16) and KA(τ) into the expression for nor-
malized envelope Γ(τ):

(17)

Figures 5a and 5b demonstrate the results of calculation
(gray area). It is seen that expression (17) describes the
envelope of ACF Ψ(τ) well. Note that taking into
account the ratio KA(τ)/KA(0) makes it possible to
obtain a good approximation at both late (τ ≥ 20) and
early (0 < τ < 20) moments. This means that the ampli-
tude fluctuations play a significant role at early
moments, whereas slow splitting of correlations mainly
depends on the effective phase diffusion. The coinci-
dence of the experimental results for spiral chaos and
the results obtained using the classical harmonic noise
model is really amazing! However, we are unable to
strictly account for such a coincidence. First of all, rela-
tionship (8) is obtained assuming that the values of
amplitude and phase are statistically independent,
which is not the case for chaotic oscillations. Second of
all, expression (8) is derived assuming that phase fluc-
tuations represent a Wiener process. In the case of cha-
otic oscillations, process φ(t) is more intricate and its
statistical properties are unknown. Note that the data
presented in Fig. 5a are obtained for deterministic
chaos (in the absence of noise).

For τ > τcorr (where τcorr is the correlation time), the
chaotic oscillation ACF envelope is given by the expo-
nential function exp(–Beff|τ|). In accordance with the
Wiener–Khintchine theorem, the spectral peak at mean
frequency ω0 is close to Lorentzian, and its width
depends on the effective phase diffusion coefficient Beff:

(18)

This is proved by calculations (Fig. 6). The approx-
imation of the central peak based on expression (18)
agrees well with the direct simulations of the power
spectrum of oscillations x(t) in both the absence and
presence of noise. Note that the results for the noise
intensity D = 10–3 (Figs. 5 and 6) were also verified for
the noise intensities 0 < D < 10–2 and for other values of
parameter µ corresponding to the spiral attractor mode.

The results of approximation of the chaotic oscilla-
tion ACF and the shape of the fundamental spectral
peak agree with the studies of spiral attractors in alter-
native dynamic systems. For example, consider the
Anishchenko–Astakhov oscillator with inertial nonlin-
earity [19]. With dimensionless variables, it is
described by the following equations:

(19)
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Fig. 5. (Gray area) normalized ACF of oscillations x(t) in
system (13) at α = β = 0.2 and µ = 6.5 and (1) its approxi-
mation based on expression (17) (a) in the absence of noise
(D = 0) at Beff ≈ 0.0002 and (b) in the presence of noise at

D = 10–3 and Beff ≈ 0.0003. (c) ACF envelopes at logarith-

mic scale for D = (1) 0, (2) 10–3, and (3) 10–2.
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where f(x) = x2 at x > 0, f(x) = 0 at x ≤ 0, m = 1.35, g =
0.21, and ξ(t) is a noise source with the same character-
istics as in system (13). We analyze equations (19) and
equations obtained using change of variables (14). The
oscillator with inertial nonlinearity is extremely sensi-
tive to low-intensity noise. Compare systems (13) and
(19). In the latter, a significantly lower noise leads to a
substantially greater increase in the phase diffusion. In
addition, the noise effect on a developed spiral attractor
results in considerable qualitative changes and gives
rise to funnel chaos. Figure 7 demonstrates a fragment
of the power spectrum in the vicinity of the fundamen-
tal frequency and the approximation of the central peak
based on (18). The calculations for system (19) are per-
formed at two values of noise intensity.

Thus, the simulations clearly show that the spiral
chaos in self-sustained oscillatory systems retains to a
great extent the spectral and correlation properties of
noisy quasi-harmonic self-sustained oscillations. At
early moments, the rate of splitting of correlations in a
flow system depends on both the instantaneous ampli-
tude and the instantaneous phase of the chaotic oscilla-
tions. At late moments, the ACF envelope is mainly
determined by the instantaneous phase diffusion. Cor-
respondingly, the width of the main peak in the power
spectrum of spiral chaos also depends on Beff, and the
instantaneous amplitude oscillations determine the

level of spectral pedestal. In the absence of noise, the
effective phase diffusion coefficient depends on the
chaotic dynamics of the system. However, there is no
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Fig. 6. (Solid line) fragment of the normalized power spectrum of oscillations x(t) in system (13) in the vicinity of the center fre-
quency at α = β = 0.2 and µ = 6.5 and (dashed line) its approximation based on expression (18) for D = (a) 0 and (b) 10–3.
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Fig. 7. (Solid lines) fragments of the normalized power
spectrum of oscillations x(t) in system (19) in the vicinity of
the basic frequency at α = β = 0.2 and µ = 6.5 and (dashed
line) its approximation based on expression (18) for two
noise intensities D = 10–4 (Beff ≈ 0.0017) and D = 10–5

(Beff ≈ 0.00008).
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direct relationship between this coefficient and the pos-
itive Lyapunov exponents. The Lyapunov exponents
determine the properties of mixing only in the trans-
verse cross section of the flow (i.e., in the Poincaré
mapping).

3. ACFs AND POWER SPECTRA
FOR FUNNEL CHAOS

The results obtained can be generalized, to a certain
extent, to the funnel chaos mode. In comparison to spi-
ral chaos, the funnel chaos attractor exhibits a more
intricate rotation of the trajectory around the equilib-
rium point, which depends on the deterministic evolu-
tion operator. This rotation is accompanied by the
jumps in the instantaneous phase leading to nonmono-
tonic time dependence of the phase (angular variable)
[35, 39]. Funnel chaos is realized in system (13), stud-
ied in this work, at α = β = 0.2 and µ > 8.5.

To more strictly determine the instantaneous phase
of oscillation x(t) in a system with complex phase
dynamics, one can use the concept of analytical signal
[40, 41]. Analytical signal ω(t) is a complex function of
time represented as

(20)

where x(t) is a stationary centered (with zero mean)

ω t( ) x t( ) i x̃ t( )+ a t( ) iΦ t( )( )exp ,= =

process and (t) is the Hilbert transform of original
process x(t):

(21)

In this expression, the integral is considered in the sense
of the Cauchy principal value. The convergence of the
integral for stochastic process x(t) is defined in the rms
sense. Instantaneous phase (angular variable) Φ(t) of
process x(t) is given by

(22)

The value of k is determined taking into account the
continuity of function Φ(t).

The transition to the funnel attractor results in a sig-
nificant (by two to three orders of magnitude) increase
in diffusion coefficient Beff of deterministic chaos lead-
ing to a rapid decay of the ACF and a significant broad-
ening of the main spectral peak [39].

Simulations for system (13) at µ = 13 and D = 0
show that, for funnel chaos, the approximations under
consideration can also provide adequate results (Fig. 8).

However, at certain values of parameter µ, the
behavior of phase variable Φ(t) is so complicated that
expression (17) fails to provide an adequate approxima-
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Fig. 8. (a) Normalized ACF and (b) (solid line) fragment of the normalized power spectrum of oscillations x(t) in system (13) in the
case of funnel chaos at α = β = 0.2, µ = 13, and D = 0. Dashed lines show approximations based on expressions (17) and (18).
Diffusion coefficient is estimated to be Beff ≈ 0.0219.
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tion, and the main spectral peak is far from Lorentzian.
This happens if the phase trajectories get into an infini-
tesimal neighborhood of the saddle–focus. We observe
such a behavior at µ = 10 (Fig. 9).

4. CORRELATION PROPERTIES
OF THE LORENZ ATTRACTOR

The method above of analyzing the correlation
properties of the Rössler and Anishchenko–Astakhov
chaotic systems, which involves the effective phase dif-
fusion coefficient, is inapplicable for the approximation
of the ACFs of switching chaotic oscillations, when the
phase space contains a few well-distinguished states
visited by trajectories with a certain probability. In the

trivial case, these states may represent stable points and
cycles. However, in such systems, switching is possible
only under the effect of noise or an external force [20,
32]. For a few rather complex chaotic attractors, one
can also select the states representing parts of an attrac-
tor separated in a complicated way by a manifold of
saddle points and cycles. The transitions between these
states are possible at the moments defined by certain
conditions [42]. Such oscillations arise, for example, in
mapping (3) and in the Lorenz system given by

(23)

In the phase space of the Lorenz system, there exist
two saddle–focus points symmetric relative to the OZ

ẋ σ x y–( ), ẏ– –xz y– rx, ż –bz xy,+=+= =

σ 10, b 8/3, r 28.= = =

0

–10

–20
0.7 0.9 1.1 1.3

ω

S(ω)/Smax, dB

Fig. 9. (Solid line) fragment of the normalized power spectrum of oscillations x(t) in system (13) in the case of funnel chaos at α =
β = 0.2, µ = 10, and D = 0 and (dashed line) approximation based on expressions (18). Diffusion coefficient is estimated to be
Beff = 0.0401.
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y

Fig. 10. Global structure of manifolds in the Lorenz system.
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axis and separated by a stable saddle-point manifold at
the origin. The complex structure of this stable manifold
allows the transition of trajectories from one saddle–
focus to another along certain paths (Fig. 10) [21, 42]. A
trajectory untwisting around a saddle–focus comes to
the stable manifold, from which it may jump with a cer-
tain probability to the other saddle–focus. It is most
likely that the rotation around the saddle–focus points
slightly affects the decay of the ACF. The ACF decay
rate must be determined by random switching.

Consider the realization of the X coordinate of the
Lorenz system (Fig. 11). Using the methods of sym-

bolic dynamics (i.e., eliminating oscillations (rotation
around saddle–focus points)), one can obtain a switch-
ing process similar to the telegraph signal. Each of the
two states of the system corresponds to the trajectory
location in the vicinity of one of the saddle–focus
points. The moment of switching between these states
corresponds to the moment at which the trajectory
crosses the YZ plane. In the presence of noise, the
moment of switching corresponds to the moment of
crossing a layer whose width depends on the noise
intensity. To account for this, note that, immediately
after crossing the boundary between the two states, the
trajectory can be switched back by the noise, which
corresponds to an infinitesimal switching time.

Compare the ACF of oscillation x(t) in the Lorenz
system and the ACF of given realization x(t) of the tele-
graph signal (Fig. 12).

It can be concluded that the time of splitting of cor-
relations and the ACF behavior at this time scale mainly
depend on switching, whereas the rotation around the
saddle–focus points slightly affects the ACF decay.
Note the linear ACF decay at early moments. This is a
remarkable fact in the sense that the linear ACF decay
corresponds to a special probability distribution of the
times of stay in one of the states. In Section 1, we have
defined two telegraph signals using the distributions of
the times of stay in one of the states. The linear ACF
corresponds to a discrete equidistant distribution of the
times of stay representing delta peaks, so that the switch-
ing probability equals 1/2 [31, 34].

Figure 13 demonstrates the distribution of pulse
durations for the telegraph signal corresponding to cha-
otic switching with the Lorenz attractor.

It is seen that the distribution of the times of stay is
close to an equidistant discrete distribution, although
the peaks have finite widths. The probability distribu-
tion of switchings at the times divisible by T0 (T0 is the
minimum time of stay in one of the states) shows that
the probability of transition is close to 1/2. In agree-
ment with the theoretical results [34], the ACF
decreases to a finite value rather than to zero due to a
finite width of the peaks in the distribution and the fact
that the probability of transition slightly differs from 1/2.

The discreteness of switching in the Lorenz system
depends on the features of the manifolds of the system.
Manifold splitting in halves in the vicinity of the point
(x = 0, y = 0) determines the behavior of the system tra-
jectories, so that the probability of switching between
two states per revolution around a fixed point equals
1/2. Owing to these features of the trajectory, the ACF
of coordinates x and y must be determined by expres-
sion (12).

In the presence of a low-intensity Gaussian white
noise, the linear character of the ACF remains virtually
unchanged. As before, model (12) describes the ACF of
the telegraph signal corresponding to x(t) well, since

20
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Fig. 11. Telegraph signal obtained for coordinate x(t) of the
Lorenz system.
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Fig. 12. ACFs of (a) realization x(t) and (b) telegraph signal.



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS      Vol. 48      No. 7       2003

CORRELATION ANALYSIS OF DETERMINISTIC AND NOISY CHAOS 759

the character of the distribution of pulse durations
remains the same (Fig. 13b).

CONCLUSIONS

The results of simulations show that spiral chaos
substantially retains the properties of quasi-harmonic
oscillations. At early moments, the rate of splitting of
correlations in differential systems depends on both the
behavior of the instantaneous amplitude and the diffu-
sion of the instantaneous phase of chaotic oscillations.
Therefore, the width of the fundamental spectral line of
spiral chaos depends on the effective phase diffusion
coefficient Beff, whereas oscillations of the instanta-
neous amplitude determine the spectral pedestal level.
In the absence of noise, coefficient Beff depends not
only on the positive Lyapunov exponents but also on
the features of chaotic dynamics.

The studies of the Lorenz attractor show that the
ACF properties depend on the statistics of chaotic
switching of the phase trajectory between the neighbor-
hoods of two saddle–focus points and slightly depend
on the characteristics of rotation around these points.
The correlation properties of chaotic oscillations are
described well by the classical model of a quasi-ran-
dom telegraph signal. In particular, expression (12)
approximates the linear decrease in the ACF of oscilla-
tions x(t) over the interval τ ∈  [0.2, 1] well. 
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