
June 12, 2003 19:39 WSPC/167-FNL 00128

Fluctuation and Noise Letters
Vol. 3, No. 2 (2003) L213–L221
c© World Scientific Publishing Company

Fluctuation and Noise Letters
Vol. 3, No. 2 (2003) 000–000
c© World Scientific Publishing Company

SPECTRAL AND CORRELATION ANALYSIS OF SPIRAL CHAOS

VADIM S. ANISHCHENKO∗, TATJANA E. VADIVASOVA,

ANDREY S. KOPEIKIN and GALINA I. STRELKOVA

Laboratory of Nonlinear Dynamics, Department of Physics, Saratov State University,

Astrakhanskya str. 83, 410026 Saratov, Russia
∗vadim@chaos.ssu.runnet.ru
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We study numerically the behavior of the autocorrelation function (ACF) and the power
spectrum of spiral attractors without and in the presence of noise. It is shown that
the ACF decays exponentially and has two different time scales. The rate of the ACF
decrease is defined by the amplitude fluctuations on small time intervals, i.e., when
τ < τcor, and by the effective diffusion coefficient of the instantantaneous phase on large
time intervals. It is also demonstrated that the ACF in the Poincare map also decreases
according to the exponential law exp(−λ+k), where λ+ is the positive Lyapunov expo-
nent. The obtained results are compared with the theory of fluctuations for the Van der
Pol oscillator.
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1. Introduction

The problem of decay of autocorrelation functions (ACF) in continuous dynamical
systems with dimension N ≥ 3 is one of the fundamental and still unresolved
tasks of the theory of chaos. In a common case this problem has not been still
resolved theoretically due to the presence of certain significant difficulties. For
two-dimensional discrete systems that satisfy the Smale axiom-A it has been only
proven that the ACF can be bounded from above by an exponentially decreasing
function [1–5]. In certain cases the ACF decays exponentially with the exponent
that is defined by the inverse of the Kolmogorov entropy h = λ+, where λ+ is
the positive Lyapunov exponent [4]. In a common case, such statements are not
fulfilled for even hyperbolic maps. Regularities of the ACF decay in differential
systems with chaotic attractors of both hyperbolic and nonhyperbolic types are
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even more complicated from a viewpoint of their theoretical description. As was
shown in [6–8], the rate of the ACF decay in differential systems depends essentially
on the structure of an attractor and on the influence of noise. Moreover, the positive
Lyapunov exponent does not define the regularities of decay of autocorrelations [7,8].
In the present Letter we substantiate numerically that for typical nonhyperbolic
attractors of the spiral type in R3, the autocorrelations decay exponentially. With
this, two time scales can be distinguished, i.e., τ ≤ τcor and τ > τcor. In the first
case the exponential decay is defined by fluctuations of the instantaneous amplitude
and in the second case it depends on the effective diffusion coefficient Beff .

The power spectrum of spiral or phase-coherent chaos exhibits a pronounced
peak at the basic (average) frequency and, consequently, the envelope of the ACF
decreases relatively slow [9–12]. Spiral attractors can be observed in such well-
known systems as the Rössler oscillator [13], the Anishchenko–Astakhov generator
[11], or the Chua circuit [14]. The self-sustained oscillations in these systems can
remind the dynamics of noisy periodic oscillators of a Van der Pol oscillator type
[15–19]. The main objective of our Letter is to substantiate quantitatively that
chaotic attractors of the spiral type possess the properties of a noisy limit cycle,
although, these attractors are realized in fully deterministic systems, i.e., without
external fluctuations.

2. Classical Theory of the Van der Pol Oscillator

Spectral and correlation properties of quasiharmonic self-sustained oscillations in
the presence of noise were studied in the framework of the classical theory of fluctu-
ations in the Van der Pol oscillator [20–23]. If the oscillations x(t) are represented
in the form of x(t) = A(t) cos(ω0t+ φ(t)), then after averaging we obtain the well-
known reduced stochastic equations for the Van der Pol oscillator [20]:

Ȧ = γA

(

1 − A2

A2
0

)

+
ω2

0D

A
+ ω0

√
2Dν(t) ,

φ̇ =
ω0

√
2D

A
η(t) .

(1)

Here γ is the parameter of excitation, ω0 is the frequency, and A0 is the unperturbed
amplitude. In the regime of generation the mean amplitude 〈A(t)〉 can be considered
to be equal to A0. ν(t) and η(t) are independent sources of δ-correlated noise which
have a Gaussian distribution with zero mean. The parameter D governs the noise
intensity. If the amplitude fluctuations Ã(t) = A(t) − A0 are small, the phase
dynamics can be approximated by the following equation:

φ̇ = 2Bη(t) , B =
ω0

√
2D

2A0

. (2)

Equation (2) describes a Wiener process with the diffusion coefficient B. It is
important to note that in the approximation considered, the amplitude A(t) and
phase φ(t) are treated as statistically independent random quantities. In doing so
the ACF for a stationary random process ψx(τ) = 〈x(t)x(t + τ)〉 − 〈x(t)〉2 can be
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written as follows [20–23]:

ψx(τ) =
1

2
KA(τ) exp (−B|τ |) cosω0τ , (3)

where KA(τ) = 〈A(t)A(t + τ)〉 = ψA(τ) + A2
0 is the covariance function of the

instantaneous amplitude. The autocorrelation function of the amplitude ψA(τ) can
be expressed as ψA(τ) = 〈(A(t) − A0)

2〉 exp (−2γ|τ |) and, consequently, for the
power spectrum density Sx(ω) we have

Sx(ω) =
BA2

0

B2 + (ω − ω0)2
+

(2γ +B)〈(A(t) −A0)
2〉

(2γ +B)2 + (ω − ω0)2
. (4)

As can be seen from Eqs. (3) and (4), the influence of noise leads to a decrease of the
ACF ψx(τ), to a finite spectral line width at the frequency of auto-generation (the
first term in Eq. (4)) and to the occurrence of a noisy background (the second term
in Eq. (4)) [20–23]. An increase of the spectral line and the reduction of the ACF
basically depend on the phase diffusion coefficient B, while the noisy background is
defined by the ACF of the instantaneous amplitude ψA(τ), which is connected with
the parameter of excitation γ � B. Now we use this concept to the characterization
of spiral chaos.

3. Spectral and Correlation Analysis of Spiral Chaos

We start with the Rössler system:

ẋ = −y − z +
√

2Dξ(t) , ẏ = x+ αy , ż = β + z(x− µ) , (5)

where ξ(t) is the normalized Gaussian source of δ-correlated noise with zero mean
and D is the noise intensity. We fix α = β = 0.2 and µ = 6.5. Let us introduce the
change of variables

x(t) = A(t) cosΦ(t) , y(t) = A(t) sin Φ(t) , (6)

which determines the amplitude A(t) and the full phase Φ(t) of the chaotic oscilla-
tions. Substituting (6) Eqs. (5) can be re-written as follows:

Ȧ =
1

2
αA− 1

2
αA cos 2Φ − z cosΦ +

√
2Dξ(t) cos Φ ,

Φ̇ = 1 +
1

2
α sin 2Φ +

1

A
z sin Φ −

√
2D

A
ξ(t) sin Φ ,

ż = β + z(A cosΦ − µ) .

(7)

In our numerical calculations we use both systems (5) and (7).
In [8] it has been recently shown that for spiral chaos in the Rössler system

the variance σ2
φ(t) of the instantaneous phase grows linearly in time both without

noise (D = 0) and when D 6= 0. The variance of the total phase is equal to the
variance of its non-regular component φ(t) = Φ(t) − ω̄t, where ω̄ = 〈Φ̇(t)〉 is the
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mean frequency of the chaotic oscillations. This linear dependence of variance σ2
φ(t)

on time allows us to introduce the effective phase diffusion coefficient

Beff =
1

2

dσ2
φ(t)

dt
. (8)

In our numerical simulation of Eqs. (5) we calculate the normalized autocor-
relation function of chaotic oscillations Ψx(τ) = ψx(τ)/ψx(0). Using Eqs. (7) we
compute the covariance function of the amplitude KA(τ) and the effective phase
diffusion coefficient Beff . We use the time-averaging procedure for calculating Ψx(τ)
and KA(τ). The coefficient Beff is computed by averaging over an ensemble of re-
alizations [8]. Figure 1 shows the calculation results for Ψx(τ) in system (5). The
ACF decays almost exponentially both without noise (Fig. 1(a)) and in the presence
of noise (Fig. 1(b)). Additionally, as seen from Fig. 1(c), for τ < 20 there is an
interval on which the correlations decrease much faster.
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Fig. 1. Calculation results for the Rössler system (5) with α = β = 0.2 and µ = 6.5. Normalized
ACF Ψx(τ) (curve 1) and the approximation of its envelope (9) (curve 2) for (a) D = 0, Beff =
0.00019 and (b) D = 0.001, Beff = 0.00032. (c) The envelopes of Ψx(τ) in a logarithmic scale for
D = 0 (curve a), D = 0.001 (curve b), and D = 0.01 (curve c).

Using Eq. (3) we can approximate the envelope of the calculated ACF Ψx(τ). To
do this, we substitute the numerically computed characteristicsKA(τ) and B = Beff

into an expression for the normalized envelope Γ(τ):

Γ(τ) =
KA(τ)

KA(0)
exp (−B|τ |) . (9)

The calculation results for Γ(τ) are shown in Fig. 1(a,b) by black dots (curves 2). It
is seen that the behavior of the envelope of Ψx(τ) is described well by Eq. (9). Note
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that taking into account the multiplier KA(τ)/KA(0) enables us to obtain a good
approximation both for large time intervals (τ ≥ 20) and on the interval 0 < τ < 20.
This means that the amplitude fluctuations play a significant role on short time
intervals, while the slow process of correlation splitting is mainly determined by
the phase diffusion. Thus, we observe a surprisingly good agreement between the
numerical results for the spiral chaos and the theoretical data for the quasiharmonic
self-sustained generator. It is important to note that the data presented in Fig. 1(a)
are obtained in the regime of deterministic chaos, i.e., without external fluctuations.
Additionally, our numerical results have demonstrated that the mutual correlation
function between the amplitude and phase fluctuations is significantly larger than
zero.

We have shown that for τ > τcor the envelope of ACF can be approximated
by the exponential law exp (−Beff |τ |). Then according to the Wiener-Khinchin
theorem, the spectral peak at the average frequency ω̄ must have a Lorenzian shape
and be defined by the first term of Eq. (4) for B = Beff and ω0 = ω̄ a . The
numerical findings are presented in Fig. 2. The basic spectral peak is approximated
by using (4) and this fits quite well with the calculation results for the power
spectrum obtained both without and in the presence of noise. The ACF Ψx(τ),
its envelope and the power spectrum have also been estimated for different noise
intensities 0 < D < 10−2 and for the range of parameter µ values corresponding to
the regime of spiral attractor. These findings have demonstrated a close similarity
to the results presented in Figs. 1 and 2.
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Fig. 2. Power spectra near the basic frequency (solid lines) and their theoretical approximations
(4) (dashed lines) for the Rössler attractor (5) for D = 0 and D = 0.01.

As has been recently established in [7, 8] and follows from Fig. 1, the decrease
of the ACF in chaotic continuous-time systems in R3 is not determined by the pos-
itive Lyapunov exponent. Nevertheless, the question on the interrelation between
mixing and the λ+ remains to be answered. Our investigations have shown that
the splitting of correlations can be connected with the λ+. This interrelation can
be clearly observed for the dynamics of a Poincaré section. The numerical results
(Fig. 3) indicate that the normalized ACF ΨX(k) = ψX(k)/ψX(0) for the Poincaré

aThis fact requires special numerical calculations due to the presence of two time scales in the
ACF and the non-zero correlation between the amplitude and phase fluctuations in Eq. (7).
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Fig. 3. The ACF of a chaotic realization in the Poincaré section (y = 0) of the Rössler system for
D = 0 (curve 1), D = 0.001 (curve 2), and the approximation (curve 3). The same results in a
logarithmic scale are given in the inlet.

section y = 0 in the system (5) decays according to the exponential approximation
exp (−λ+k), where λ+ = 0.51.

As follows from Fig. 3, the agreement between the numerical results and the
exponential approximation is not so good as in Fig. 1. This can be mainly explained
by a finite accuracy in the construction of the Poincaré section and an insufficiently
long sequence of points in the map. It is well-known that without noise the Poincaré
section can be computed precisely by using the Henon algorithm [24]. However, this
algorithm cannot be used in the presence of noise [25]. We also assume that there
can be a deeper reason. The exponential decay of the ACF is proven for maps which
satisfy the Smale axiom. The spiral attractor in the system (5) and, consequently,
the attractor in the corresponding Poincaré section are typically nonhyperbolic.

4. Spectral and Correlation Characteristics of the GIN

Our findings for the approximation of the ACF and the shape of the basic spectral
peak are completely confirmed by our investigations of spiral attractors in different
dynamical systems. We exemplify this for the Anishchenko–Astakhov generator
(GIN) for which there is a good agreement between the results of numerical and
full-scale experiments [11]. The GIN model is governed by the following equations:

ẋ = mx+ y − xz + rx3 +
√

2Dξ(t) , ẏ = −x , ż = −gz + gf(x) . (10)

Here f(x) = x2 for x > 0, and f(x) = 0 for x ≤ 0. ξ(t) is the noise source with
the same characteristics as in the system (5). The control parameters are fixed
as m = 1.35 and g = 0.21. We have studied both the system (10) and equations
obtained after applying the change of variables (6). Our numerical calculations
of the ACF, its envelope and the power spectrum for the GIN have shown a good
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Fig. 4. Power spectrum near the basic frequency (solid line) and its theoretical approximation (4)
(dashed line) for the spiral attractor in system (10) for D = 10−5, Beff = 0.00148.

qualitative agreement with the results obtained for the Rössler system and presented
in Figs. 1 and 2. For example, Fig. 4 illustrates the power spectrum and the
approximation results for the basic spectral peak for the chosen noise intensity. It
demonstrates a better coincidence of the theoretical (4) and numerical findings as
compared with Fig. 2. We note that for the funnel (non-coherent) type of chaotic
attractors (for example, for m = 10 in the Rössler system (5)) the results being
similar to Figs. 2 and 4 cannot be obtained, although the ACF also decreases
exponentially on large time intervals.

5. Conclusion

In conclusion, we have shown in our numerical simulation that the spiral chaos
retains to a great extent the spectral and correlation properties of a noisy Van der
Pol oscillator. With this, the rate of correlation splitting in the regime of spiral chaos
is determined by the amplitude fluctuations and the instantaneous phase diffusion.
In turn the effective phase diffusion coefficient in a noise-free system is defined by
its chaotic dynamics and is not related directly to the positive Lyapunov exponent.
Basing on the presented results we can state that the model of a stochastic process
in the form of a harmonic oscillation with random amplitude and phase can describe
sufficiently well the spectral and correlation properties of chaotic attractors of the
spiral type both in a purely dynamical case and in the presence of noise (see Fig. 1).
Noisy oscillations of the Van der Pol oscillator can also be considered as a particular
case of such a process. It is important to note that for a chaotic attractor, generated
by the spiral chaos in the Poincaré map, the rate of the ACF decay is described
by the exponential law exp(−λ+k), where λ+ is the positive Lyapunov exponent of
the attractor in the Poincaré map.

The obtained results are highly important from both fundamental and applied
viewpoints. In particular, they can be applied to solving the problems of predictabil-
ity and reconstruction of attractors, which are very important in various fields, for
instance, meteorology, finances, ecology, economics, etc.
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